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Abstract

An oriented graph is a digraph that does not contain a directed cycle of length two.
An (oriented) graph D is H-free if D does not contain H as an induced sub(di)graph.
The Gyárfás-Sumner conjecture is a widely-open conjecture on simple graphs, which
states that for any forest F , there is some function f such that every F -free graph
G with clique number ω(G) has chromatic number at most f(ω(G)). Aboulker,
Charbit, and Naserasr [Extension of Gyárfás-Sumner Conjecture to Digraphs; E-JC
2021] proposed an analogue of this conjecture to the dichromatic number of oriented
graphs. The dichromatic number of a digraph D is the minimum number of colors
required to color the vertex set of D so that no directed cycle in D is monochromatic.

Aboulker, Charbit, and Naserasr’s −→χ -boundedness conjecture states that for ev-
ery oriented forest F , there is some function f such that every F -free oriented graph
D has dichromatic number at most f(ω(D)), where ω(D) is the size of a maximum
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clique in the graph underlying D. In this paper, we perform the first step towards
proving Aboulker, Charbit, and Naserasr’s −→χ -boundedness conjecture by showing
that it holds when F is any orientation of a path on four vertices.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-042

1 Introduction
In a simple graph, the size of a maximum clique gives a lower bound on its chromatic
number. But if a graph contains no large cliques, does it necessarily have small chromatic
number? This question has been answered in the negative. In 1959, Erdős showed that
there exist graphs with arbitrarily high girth and arbitrarily high chromatic number [10].
Hence, if a graph H contains a cycle there a graphs with arbitrarily high chromatic num-
ber and no induced copy of H. Around the 1980s, Gyárfás and Sumner independently
conjectured [13, 25] that for any forest H, all graphs with bounded clique number and no
induced copy of H have bounded chromatic number. The conjecture has been proven for
some specific classes of forests but remains largely open; see [23] for a survey of related
results. This paper concerns an extension of the Gyárfás-Sumner conjecture to directed
graphs proposed by Aboulker, Charbit, and Naserasr [3].

We call a digraph oriented if it has no digon (directed cycle of length two). This paper
will focus on finite, simple, oriented graphs. For a digraph D = (V,E) we define the
underlying graph of D to be the graph D∗ = (V,E∗) where E∗ is the set obtained from E
by replacing each arc e ∈ E by an undirected edge between the same two vertices. We say
two vertices in D are adjacent or neighbors if they are adjacent in D∗. We denote the set
of neighbors of a vertex v ∈ V (D) by N(v) and we denote N(v) ∪ {v} by N [v]. For a set
of vertices S ⊆ V (D) we let N(S) and N [S] denote the sets ∪v∈SN(v) \ S and ∪v∈SN [v].
For a subdigraph H ⊆ D we let N(H) denote the set N(V (H)). We let Pt denote the path
on t vertices and

−→
Pt be the path p1 → p2 → · · · → pt. We call an oriented graph whose

underlying graph is a clique a tournament. Given a (di)graph G and S ⊆ V , we denote the
sub(di)graph of G induced by S as G[S]. We say that a (di)graph G contains a (di)graph
H if G contains H as an induced sub(di)graph. If G does not contain a (di)graph H we
say that G is H-free. The clique number and the chromatic number of a digraph are the
chromatic number and clique number of its underlying graph, respectively. We denote the
clique number and the chromatic number of a (di)graph G by ω(G) and χ(G), respectively.
We say that a graph H is χ-bounding if there exists a function f with the property that
every H-free graph G satisfies χ(G) ≤ f(ω(G)). In this language, the Gyárfás-Sumner
conjecture states that every forest is χ-bounding.

How can the Gyárfás-Sumner conjecture be adapted to the directed setting? A first
idea is to call an oriented graph H χ-bounding if there exists a function f with the property
that every H-free oriented graph D satisfies χ(D) ≤ f(ω(D)). Then, once again, by [10],
all χ-bounding oriented graphs are oriented forests. Note that if an oriented graph H is
χ-bounding, its underlying graph H∗ is also χ-bounding. However, the converse does not
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hold, as, for instance, P4 is χ-bounding, but there exist orientations of P4 that are not
χ-bounding. There are four different orientations of P4, up to reversing the order of the
vertices on the whole path:

−→
P4 : →→→,

−→
A4 : →←→,

−→
Q4 : →←←,

−→
Q4
′ : ←←→

Chudnovsky, Scott and Seymour showed
−→
Q4 and

−→
Q4
′ are χ-bounding in [8]. However,

−→
P4

and
−→
A4 are not −→χ -bounding as shown by Kierstead and Trotter [18] and Gyárfás [15],

respectively. Chudnovsky, Scott and Seymour [8] showed that
−→
Q4,
−→
Q4
′ are both χ-bound-

ing in 2019. In the same article, the authors show that orientations of stars are also
χ-bounding.

Our first attempt at adapting the Gyárfás-Sumner conjecture to oriented graphs failed
for oriented paths such as

−→
P4 and

−→
A4. Hence, we focus on a different approach proposed

by Aboulker, Charbit, and Naserasr [3] which uses a concept called “dichromatic number”
introduced in [21]. A dicoloring of a digraph D is a partition of V (D) into classes, or
colors, such that each class induces an acyclic digraph (that is, there is no monochromatic
directed cycle). The dichromatic number of D, denoted as −→χ (D), is the minimum number
of colors needed for a dicoloring of D. Notice that every coloring of a directed graph D is
also a dicoloring, thus −→χ (D) ≤ χ(D). We say a class of digraphs D is −→χ -bounded if there
exists a function f such that every D ∈ D satisfies −→χ (D) ≤ f(ω(D)) and we call such an f
a −→χ -binding function for D. We say that a digraph H is −→χ -bounding if the class of H-free
oriented graphs is −→χ -bounded.

We can now state Aboulker, Charbit, and Naserasr’s dichromatic analogue to the Gyár-
fás–Sumner conjecture for digraphs. For brevity, we will call this conjecture the “ACN
−→χ -boundedness” conjecture in the remainder of this extended abstract.

Conjecture 1.1 (The ACN −→χ -boundedness conjecture [3]). Every oriented forest is −→χ -
bounding.

The converse of the ACN −→χ -boundedness conjecture holds; all −→χ -bounding digraphs
must be oriented forests. Indeed, Harutyunyan and Mohar proved that there exist oriented
graphs of arbitrarily large undirected girth and dichromatic number [16]. Oriented graphs
of sufficiently large undirected girth (and no digon) forbid any fixed digraph that is not an
oriented forest.

The ACN −→χ -boundedness conjecture is still widely open. It is not known whether the
conjecture holds for any orientation of any tree T on at least five vertices that is not a
star. In particular, it is not known whether the conjecture holds for oriented paths. In
contrast, Gyárfás showed that every path is χ-bounding in the 1980’s [13, 14] via short
and elegant proof. For t ≤ 3, every orientation of Pt is trivially −→χ -bounding. However,
for t ≥ 4, the picture gets more complicated. Let T be any fixed orientation of K3.
In [3], Aboulker, Charbit and Naserasr showed that class of (T ,

−→
P4)-free oriented graphs

have bounded dichromatic number. The authors also show that
−→
P4-free oriented graphs

with clique number at most three have bounded dichromatic number. Recently, Aboulker,



Proving a directed analogue of the Gyárfás-Sumner conjecture for orientations of P4 308

Aubian, Charbit, and Thomassé showed that
−→
P6-free oriented graphs with clique number

at most two also have bounded dichromatic number [1]. See [5] for further related results.
Let
−→
Kt denote the transitive tournament on t vertices. Steiner showed that the class of

(
−→
K3,
−→
A4)-free oriented graphs has bounded dichromatic number in [24]. In the same paper

Steiner asked whether the class of (H,
−→
Kt)-free oriented graphs has bounded dichromatic

number for t ≥ 4 and H ∈ {
−→
P4,
−→
A4}. Our main result answers this question in the

affirmative as corollary.

1.1 Our contributions

In this paper, we show that every orientation of P4 is −→χ -bounding and thus the ACN
−→χ -boundedness conjecture holds for all orientations of P4. The ACN −→χ -boundedness
conjecture is open for any orientation of Pt for t ≥ 5. Our main novel result is that

−→
P4 and−→

A4 are both −→χ -bounding. To summarize, our main result is the following:

Theorem 1.2. Let H be an oriented P4. Then, the class of H-free oriented graphs is
−→χ -bounded. In particular, for any H-free oriented graph D,

−→χ (D) ≤ (ω(D) + 7)(ω(D)+8.5).

2 Proof Sketch
In this section we will sketch the proof of Theorem 1.2. The full proof is available in the
arXiv version of this paper [9]. Our main tool in the proof is an object called a “dipolar
set” which was first introduced in [2] as a “nice set”.

Definition 2.1. A dipolar set of an oriented graph D is a nonempty subset S ⊆ V (D) that
can be partitioned into S+, S− such that no vertex in S+ has an out-neighbor in V (D \ S)
and no vertex in S− has an in-neighbor in V (D \ S).

We will use the following lemma from [2] which reduces the problem of bounding the
dichromatic number of D to bounding the dichromatic number of a dipolar set in every
induced oriented subgraph of D.

Lemma 2.2 (Lemma 17 in [2]). Let D be a family of oriented graphs closed under taking
induced subgraphs. Suppose there exists a constant c such that every D ∈ D has a dipolar
set S with −→χ (S) ≤ c. Then every D ∈ D satisfies −→χ (D) ≤ 2c.

We will give a way of finding a dipolar set in any oriented graph excluding some ori-
entation of P4 as an induced subdigraph and show how to bound its dichromatic number.
The backbone of our dipolar set is an object we call a closed tournament.

Definition 2.3. We say K and P form a closed tournament C = K ∪ V (P ) if K is a
tournament of maximum order and P is a directed path from a source component to a sink
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component of the directed graph induced by K. We say K and P form path-minimizing
closed tournament if |P | is minimized amongst all choices of K,P that form a closed
tournament.

Lemma 2.4. Let H be an orientation of P4 and D be an H-free oriented graph. Let C be
a closed tournament in D and let X be the set of vertices with both an in-neighbor and an
out-neighbor in C. Then N [C ∪X] is a dipolar set.

The proof follows from the fact that every v ∈ N(C) must have a non-neighbor in C
and from the definition of strong connectivity. See Lemma 3.1 in [9] for details.

Our proof that orientations of P4 are −→χ -bounding proceeds by induction. Let H be an
oriented P4 and let ω > 1 be an integer. We let γ be the maximum of −→χ (D′) over every
H-free oriented graph D′ satisfying ω(D′) < ω. We assume γ is finite. We let D be an
H-free oriented graph with clique number ω and assume D is strongly connected.

Observation 2.5. Every v ∈ V (D) satisfies −→χ (N(v)) ≤ γ.

Let C = K ∪ V (P ) be a path-minimizing closed tournament in D. Let X be the set
of vertices in N(C) with an in-neighbor and an out-neighbor in C. Then N [C ∪ X] is a
closed tournament. It remains to show that −→χ (N [C ∪X]) is bounded by a function of ω
and γ.

By Observation 2.5, −→χ (N [K]) ≤ ω ·γ+ω. Let the vertices of P be p1 → p2 → · · · → p`,
in order. Then since C is path minimizing, P is a shortest directed path from p1 to p`.
Hence:

Observation 2.6. For each integer 2 ≤ i+ 1 < j ≤ `, there is no arc from pi to pj.

It follows that −→χ (V (P )) ≤ 2. Hence, it is enough to show that −→χ (N(P ) \N [K]) and
−→χ (N(X)\N [C]) are bounded by a function of ω and γ. We obtain that −→χ (N(X)\N [C]) ≤
2γ by applying the following lemma with Q := C, R := X and S := N(X) \N [C].

Lemma 2.7. Let H be an oriented P4 and let D be an H-free oriented graph. Suppose
there is a partition of V (D) into sets Q,R, S such that there is no arc between Q and S,
every r ∈ R has both an in-neighbor and an out-neighbor in Q and every s ∈ S has a
neighbor in R. Let γ be an integer such that for every r ∈ R, we have −→χ (N(r)) ≤ γ. Then
−→χ (S) ≤ 2γ.

Lemma 2.7 follows from an easy inductive argument on |S|. (See Lemma 4.3 in [9] for
details). By Lemma 2.7, it only remains to show that −→χ (N(P ) \ N [K]) is bounded by
some function of γ and ω. Note, we cannot simply apply Observation 2.5 because P may
be arbitrarily long. For this part of the proof we proceed (slightly) differently for each
orientation of P4. Here, we present a sketch of the case when H =

−→
P4. The other cases are

similar.
We say the “first” and “last” neighbors of a vertex v ∈ N(P ) are the vertices pi ∈

N(v) ∩ V (P ) minimizing i and maximizing i, respectively. For each integer 1 ≤ i ≤ `,
we let Fi, Li denote the sets of vertices in N(P ) whose first neighbor is pi and whose last
neighbor is pi, respectively. Let F−i , L

+
i be the sets consisting of all out-neighbors of pi in

Fi and in-neighbors of pi in Li, respectively.
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Observation 2.8. Let 2 ≤ i < j ≤ ` − 1. Then there are no arcs from F−i to Fj and no
arcs from Li to L+

j .

Indeed, as otherwise D[N [{pi, pj}]] would contain a
−→
P4. Let W = ∪`−1i=2(F

−
i ∪ L+

i )
Then by Observation 2.5 and Observation 2.8, −→χ (W ) ≤ 2γ. Let R = N(P ) \ (W ∪
N({p1, p2, p`})). By Observation 2.5, we need only show showing −→χ (R) is at most some
function of γ and ω to complete the proof of Theorem 1.2. We will require a technical
lemma:

Lemma 2.9. Let v, w ∈ R, if (w, v) ∈ E(D), there is a directed path from v to w on at
most max{6, `− 1} vertices.

Lemma 2.9 follows from Observation 2.6 and a brief case analysis. See Lemma 5.4 from
[9] for details.

Lemma 2.10. −→χ (R) ≤ 6γ.

Proof. If P contains at most six vertices then −→χ (N(P )) ≤ 6γ, hence we may assume this is
not the case. We may assume that there is a tournament J of size ω in D[R] for otherwise
−→χ (R) ≤ γ. Since P 6= ∅ and C = K ∪ V (P ) was chosen to be path-minimizing it follows
that J cannot be strongly connected. Let v be a vertex in the sink component of J and
w be a vertex in the source component of J . Therefore, (w, v) ∈ E(D). Thus by Lemma
2.9 there is a path Q from v to w of length less than that that of P . Hence, J, P ′ form a
closed tournament. By definition since K,P were chosen to form a path-minimizing closed
tournament P ′ cannot be shorter than P , a contradiction.

By combining the results from this section, we obtain that −→χ (N [C ∪ X]) is at most
some function of γ and ω. Since N [C∪X] is dipolar, it follows from Lemma 2.2 that −→χ (D)

is at most some function of γ and ω. Hence, by induction
−→
P4 is −→χ -binding. The proofs

that
−→
A4,
−→
Q4 and

−→
Q4
′ are −→χ -binding are similar (and slightly simpler). Full details can be

found in [9].

3 Conclusion
Our result is an initial step towards resolving the ACN −→χ -boundedness conjecture for
orientation of paths in general. However, we think we are still far from this result. It
would already be interesting to hear the answer to the easier question: Is it true that for
every oriented path H there is a constant cH such that every oriented graph not containing
H or a tournament of size three has dichromatic number at most cH . By Theorem 1.2 this
is known when H is an orientation of a path of length at most four. It is proven in [1] that
this is true when H =

−→
P6.

Recall that the classes of
−→
Q4-free oriented graphs and

−→
Q4
′-free oriented graphs were al-

ready shown to be χ-bounded in [8]. The χ-binding function f ′ for these two classes from [8]
is defined using recurrence f ′(x) := 2(3f ′(x− 1))5 which leads to a double-exponential
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bound on χ, and cannot guarantee a better bound on −→χ . In this paper,Theorem 1.2 pro-
vides an improved −→χ -binding function for these classes. We would like to know whether
any orientation of P4 is polynomially −→χ -bounding. In other words, is there some oriented
P4 so that the class of oriented graphs forbidding it has a polynomial −→χ -binding function?
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