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Abstract

We define a bijection between two-stack sortable permutations and fighting fish,
enriching the garden of bijections linking the numerous combinatorial classes counted
by the sequence A000139 of the OEIS. Our bijection is (up to symmetry) the non-
recursive version of the one of Fang (2018). Along the way, we encounter labeled
sorting trees, a new class of trees that appear to have nice properties that seem worth
to explore.
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1 Introduction

The problem of sorting a permutation through a stack was addressed by Knuth in his
seminal work [9] (Section 2.2.1), initiating the development of the field of pattern-avoiding
permutations. While one-stack sortable permutations are characterized by their avoid-
ance of the pattern 231 and counted by the Catalan numbers, West [I1] established the
pattern-avoidance characterization of two-stack sortable permutations, but did not succeed
in proving that the number of such permutations of size n is given by the nice formula
W22n+1) 3:), leaving it as a conjecture. This formula was first proved by Zeilberger [12]
using generating functions, then refined according to certain statistics by Bousquet-Mélou
[1]. Other proofs of this enumeration were later found by Dulucq, Gire and Guibert [6], by
Goulden and West [8] establishing bijections between two-stack sortable permutations and
nonseparable planar maps using either generating trees or recursive decompositions. Hence
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two combinatorial explanations of the enumeration formula were found, but they were still
not completely satisfying because recursive. More recently, Fang [7] used another recursive
decomposition of two-stack sortable permutations to define a bijection with fighting fish, a
generalization of parallelogram polyominoes introduced in 2016 by Duchi, Guerrini, Rinaldi
and Schaeffer [2]. The main contribution of the present paper is a direct description of the
bijection of Fang using a particular class of trees that we call labeled sorting trees, which,
combined with the encoding of nonseparable planar maps by fighting fish given by Duchi
and the third author [4], leads to a direct bijective path from two-stack sortable permuta-
tions to nonseparable planar maps. This is one step further in the bijective understanding
of the connections between combinatorial structures enumerated by |10, A000139]: we refer
to the first page of [4] for a diagram summarizing known bijections.

The paper is organized as follows: we first present the objects involved in our bijection
(two-stack sortable permutations and fighting fish), we then describe our bijection going
through labeled sorting trees, and we finish by an overview of open questions arising
naturally in our work.

2 Preliminaries

2.1 Stack sorting on permutations

Let 7 be a word made of distinct positive integers. If 7 is empty, we define S(7) = 7.
Else, if we denote by k the largest letter of 7, we can write 7 = 7,k7y, and we then define
S(7) = S(7)S(7»)k. A permutation o € &,, is identified with its one-line notation o;...0,,,
where we write o; for o(i). Restricted to permutations, S is said to be the operator of
stack-sorting. Stack-sorting deserves its name because S(o) is the word 7 obtained from
o via the following procedure on a stack constrained to be decreasing from bottom to top.
Initialize the stack to be empty and 7 to be the empty word, and at each step, consider the
smallest 7 such that o; has not yet been put in the stack : if the stack is empty or if the top
element of the stack is greater than o; then put o; on the top of the stack, otherwise pop
the top element of the stack and append it to 7. If all elements of o have been treated, then
pop out the top of the stack and append it to 7. The procedure ends when all elements
of o have been treated and the stack is empty. We can encode this procedure by a Dyck
path : we add an up step u = (1,1) to the path each time we put an element on the top of
the stack, and a down step d = (1, —1) each time we pop out the top element of the stack.
We denote by D(o) the Dyck path obtained for a permutation o € &,, : it is a path from
(0,0) to (2n, 0) staying weakly above the z-axis. For k = 1, we define Dy (') = D(S* ().

For k = 0, a permutation o € G,, is said to be k-stack sortable if Sk(a) is the identity.
A k-stack sortable permutation o is uniquely determined by the tuple (D;(0),...,D;(c))
because o can be recovered from the identity by reverting the stack-sorting process encoded
by this tuple of Dyck paths. We denote by 258, the set of two-stack sortable permutations
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of &, and 288 =, ., 28S,,.
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2.2 Fighting fish

While fighting fish have been introduced in [2] in terms of gluings of square cells, we
present them here as words on the alphabet {E, N, W, S} (see Figure |1)):

Definition 1. A word w € {E, N, W, S}" is a fighting fish if it can be obtained from the
word ENW .S using a finite sequence of the following 3 operations:

o Upper gluing : replace a subword W by NWS.

e Lower gluing : replace a subword N by ENW. .

e Double gluing : replace a subword WN by NW.
The size of a fighting fish is half of its length minus 1. We denote by FF,, the set of fighting
fish of size n, and by FF = |J FF,.

nx1

Figure 1: The tilted cardinal steps, a cell and operations of upper, lower and double gluing.

There is a natural notion of symmetry on fighting fish: if F is a fighting fish, its
conjugate, denoted Conj”™” (F), is the fighting fish obtained by reversing F and changing
its letters with the rules E < S, W < N. Conjugation is an involution on fighting fish,
that is Conj”” o Conj”” is the identity on FF, and we can see it as the symmetry with
respect to the horizontal axis on our two-dimensional pictures.

3 The bijection from two-stack sortable permutations
to fighting fish

3.1 From permutations to labeled sorting trees

Let 0 € 6,, be a permutation, and let us define 6 € &,,,; by setting 6(1) = n + 1
and 6(i) = o(i — 1) for 2 < i < n+ 1. We represent ¢ as the set of points {(i,5(i))}
in Z° (its grid representation) and we construct a rooted plane tree on this set of points.
The sorting tree ST(o) associated to o is the rooted plane tree obtained by the following
top-to-bottom process :
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e Define the root to be (1,n + 1).

e At step j = 1, we insert the point (k,5(k)) in the tree, where k is such that 6(k) =
n — 7. To do so, let us consider 0 = i; < i3 < ... < 7; the z-coordinates of all points
already inserted in the tree. There is then a maximal index m such that i,, < k. We
distinguish two cases :

— Ifm=jord(i,) < 0(ine:), we define the parent of (k,5(k)) to be (i,,, 5 (i,,)).

— If m < j and 6(4,,) > 6(4y41), We consider the greatest m + 1 < r < n such
that 6(i,,) > 0(tpmer) > ... > 0(i,), and we set the parent of (k,d(k)) to be

(ira 6(27“))

e The process ends when all points have been inserted, i.e. after the n'™ step.
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Figure 2: The permutation 617953842, its sorting tree and its labeled sorting tree

O—O—R—C—0«

//
/O

/
A
&

This procedure produces a tree since n edges are inserted and no cycles are created,
because each non-root vertex has a parent of strictly greater y-coordinate. The permutation
0 can be split into maximal descending runs in a unique way. We associate to every element
of & its run label in the following way: if it is not the last element of its descending run, we
label it by 0, else we label it by the number of elements in its descending run. The [abeled
sorting tree LST (o) associated to o is the plane rooted tree obtained by labeling each node
of ST (o) with the run label of the element to which it corresponds in the permutation. As
an example, we give the (labeled) sorting tree of the permutation 617953842 in Figure .

Sorting trees and labeled sorting trees of permutations are intimately linked to the
Dyck paths corresponding to their first two passes into a stack:

Proposition 1. Let 0,7 € G,,. Then:
e ST(0) = ST(7) if and only if Dy(c) = Dy(7).
e LST (o) = LST(7) if and only if (D,(c),Dy(c)) = (D(7), Dy(7)).
In particular, when o, € 288S,,, ST(c) = ST(7) if and only if S(c) = S(7).

The proof of the next proposition, that we do not present here, relies mainly on the
decomposition of two-stack sortable permutations presented in 7] and on its isomorphic
counterpart on labeled sorting trees, transferred by LST:
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Proposition 2. Let T' be a rooted labeled plane tree with root r, and having n non-root
vertices (we say that it has size n). For a given node v € T, we denote by \(v) its
nonnegative label, deg(v) its number of children, sub(v) the subtree of T rooted at v and
anc(v) the nodes w such that v belongs to sub(w) (the ancestors of v).

Then there exists a permutation o € &,, such that LST (o) = T if and only if:

(Y AMv)=n+1
Vv eT, \Nv) < Z( )(2—deg(w))—1
Vv eT\{r}, Zb( )(/\(w)—l) >1

Furthermore, denoting by LST,, the set of trees satisfying these three conditions, the re-
striction of the map LST to two-stack sortable permutations is a bijection between 2S8S,,

and LST,.
Since LST(S,,) = LST,,, we can call trees in LST = |J LST,, labeled sorting trees.

nx1

3.2 From labeled sorting trees to fighting fish
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Figure 3: A tree in LST, its fish word displayed on the tree and the corresponding fighting
fish.

Let T be a tree in £LST,,. We build a word w on the alphabet {E, N, W, S} with the
following algorithm using a stack :

e Set w to be the empty word and the stack to be empty, and run a clockwise tour of
the tree T', starting from the root.

e Every time we encounter a vertex v for the first time, we read its label A(v) : if
A(v) = 0, then we put nothing in the stack and append F to w, else A(v) > 0 and
we insert (in this order) a letter S and A(v) — 1 letters W in the stack and append
N to w.

e Every time we encounter a vertex for the last time, we pop the top element of the
stack and append it to w.
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e The algorithm ends after we reach the root vertex for a second (and last) time.

The word w obtained via this procedure is called the fish word of T and we denote it
by FW(T'). We provide an example in Figure 3| It is not straightforward that the stack
is always not empty when we have to pop an element of the stack, but the conditions on
labels of labeled sorting trees ensure this property.

Proposition 3. The map FW : LST — FF is a bijection preserving the size.

Our proof of the proposition relies on the isomorphic decompositions of labeled sorting
trees and of fighting fish (the wasp-waist decomposition presented in [3]) transferred by FW.
Combining the maps LST and FW, we then get (up to conjugation) a direct description
of the recursive bijection of Fang (see [7]) between two-stack sortable permutations and

fighting fish:

Theorem 1. The map FW o LST : 288 — FF is a bijection that sends two-stack sortable
permutations of size n to fighting fish of size n.

4 Perspectives

e Let T € LST, a labeled sorting tree. Proposition [2] states that there is a unique
two-stack sortable permutation o such that LST (o) = T'. It raises the natural question of
enumerating the set {r € &,,,LST(7) = T}. An equivalent problem is to determine how
many permutations 7 € &,, satisfy (D,(7),Dy(7)) = (D;(0),Dy(0)).

e The conditions of the characterization of trees belonging to LS7T,, in Proposition
do not depend on the order of the children of a given vertex. In particular, the mirror
tree (obtained by recursively reversing the order of the children of the nodes) of a tree in
LST, is also in LST,,. This symmetry is surprising if we consider that £LST,, is the set
of labeled sorting trees of two-stack sortable permutations. On the other hand, it is also
not evident that the algorithm defining the bijection FW still produces a valid fighting fish
when considering the mirror tree of a tree in LS7T,,. It might be interesting to investigate
the involutions on two-stack sortable permutations and on fighting fish induced by this
mirror involution on labeled sorting trees.

e Similarly, conjugation on fighting fish gives rise to involutions on labeled sorting trees
and on two-stack sortable permutations. It would be nice to have a direct description of
these involutions, since the counterpart of conjugation on nonseparable planar maps is the
important notion of duality (see [4]).

e A natural statistic to consider on fighting fish is the area: it is the number of square
cells composing it (or equivalently the area enclosed by the corresponding quadrant walk).
This statistic has an interesting counterpart on synchronized Tamari intervals (which are
bijectively linked to fighting fish in [5]), generalizing the notion of area on Dyck paths. We
tried to have a nice and direct interpretation on (two-stack sortable) permutations of the
area statistic on fighting fish (transferred by FW o LST), without success. Still, we were
able to characterize the permutations giving rise to a fighting fish of minimal area in terms
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of pattern avoidance. We also conjecture that they are enumerated according to their size
by the sequence [10, A131178].
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