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Abstract

We introduce compactification results on the set of sequences of positive real num-
bers: under the continuum hypothesis, one can find a totally ordered set of sequences
whose elements can be used as test sequences to capture every possible asympthotic
growth, perhaps along a subsequence; this behaviour mimics the statement that, in
a compact set of R, every sequence has a convergent partial subsequence. These
compactification results allows us to unify two notions of convergence for graphs into
a single graph-convergence notion, while retaining the property that each sequence
of graphs have a convergent partial subsequence. These convergent notions are the
Benjamini-Schramm convergence for bounded degree graphs, regarding the distribu-
tion of r-neighbourhoods of the vertices, and the left-convergence for dense graphs,
regarding the existence, for each fixed graph F , of a limiting probability that a ran-
dom mapping from F to {Gi} is a graph homomorphism.
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1 Introduction
Recently, several authors have considered the study of (large) discrete objects by, after
introducing an appropriate limit notion, draw conclusions of the sequence by studying the
objects that appear as their limits. Two of the most well known examples is the study of
limits of sequences of graphs (e.g. [2, 9, 4]) or of permutations (see [8]). In this work, we
focuss our attention to limits of graphs.

In the area of limits of graphs, one of the problems is that the properties of the sequences
of graphs are radically different depending on several parameters, one of them being the
density of edges. Thus, there have appeared several convergence notions depending on
different growth regimes, such as the notion of left-convergence [9, 4] that works well when
the density of edges is a positive proportion of the total number (dense case) yet trivializes
when the sequence is of sparse graphs (non-dense), or Benjamini-Schramm convergence
[2] when the sequence is of bounded degree graphs (very sparse case). Other notions of
convergence for limits of graphs have been introduced; these either generalize the previous
two in several ways, or consider some strenghthening of them. As some examples we can
mention: Lp convergence [5, 3], action convergence [1], log–convergence [11], convergence
in fragments of logic [10], for intermediate growth [6], or local-global convergence [7].

In the following, we give compactification results on the set of sequences of positive
real numbers Theorem 1 and Theorem 2 that, as far as we know, are new, and we give an
application of such results to limits of graphs by considering a graph limit notion that is
uniform regardless of the growth regime of the number of edges, thus generalizing both the
local convergence [2] and the left-convergence [9, 4]. This notion can be seen as a brute
force generalization of the one by Frenkel [6]. First let us present the compactification
results.

Theorem 1. Assume the continuum hypothesis. Let R>0 = {f | f : ω → R>0} be the set
of positive real sequences. Then there exists a set A ⊂ R>0 such that:

1. For each a, b ∈ A,
lim
n→∞

a(n)

b(n)
is either 0 or ∞.

2. For each g ∈ R>0 and each ordered embedding ι : (ω,<) → (ω,<), there exists an
ordered embedding ι0 : (ω,<)→ (ω,<), an a ∈ A, and a c ∈ (0,∞) such that

lim
n→∞

a(ι(ι0(n)))

g(ι(ι0(n)))
= c

Theorem 1 claims to obtain a totally ordered set A (ordered with the relation a <

b ⇐⇒ limn→∞
a(n)
b(n)

= 0) with the property that for any partial sequence (given by the
pair (g, ι)), there exists a subsequence (given by ι0), an element of A (given by a), and a
constant c ∈ (0,∞) such that, up to c, the sequence a gives the asympthotic behaviour of
g along a subsequence ι0. We interpret this result in two ways:
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• the set A is a set of test functions that verifies that R>0 satisfies the following
“compactification property”: “every sequence have a convergent partial subsequence”.

• the set of test functions A “captures” every possible asympthotic behaviour.

We can impose additional restrictions on A and on the set of sequences considered.

Theorem 2. Assume the continuum hypothesis. Let f0, f1 : ω → R>0 such that f0(i)
f1(i)

<
f0(i−1)
f1(i−1) for i > 0. Let R>0(f0, f1) = {f |f : ω → R>0, f(i) ∈ [f0(i), f1(i)]} the set of positive
real sequences between f0 and f1. There exists a set A ⊂ R>0(f0, f1) such that 1 and 2 in
Theorem 1 are satisfied and, moreover, f0, f1 ∈ A.

Applications to limits of graphs. Let G◦ be the set of finite graphs with one loop in
each vertex, and G the set of finite graphs. For each F ∈ G, let AF denote a set of sequences
of positive real numbers obtained by using Theorem 2 with f0(n) = n and f1(n) = n|V (F )|,
and with both sequences in AF , where V (F ) is the vertex set of F . Note that, for each
G ∈ G◦, |{h : F → G : h is a graph homomorphism}| ∈ [n, n|V (F )|].

Let {Gi}i∈I be a sequence of graphs in G◦ with strictly increasing number of vertices
(not necessarily |Gi| = i, just an strictly increasing sequence). We say that (see [12,
Definition 2.1])

{Gi}i∈I is q-convergent to {(fF , cF )}fF∈AF ,cF∈(0,∞) ⇐⇒

for each F ∈ G, lim
i→∞

|{h : F → Gi : h is a graph homomorphism}|
fF ( |V (Gi)| )

= cF (1)

Note that the use of G◦ instead of G is mostly for technical reasons, as we always want to
consider sequences of non-zero real numbers. Note also that, by doing inclusion–exclusion
arguments, the number of homomorphisms from F to G′ (with the loops removed) can
be recovered from the number of homomorphisms from Fi to G (graph with one loop on
each vertex), where {Fi} are the subgraphs of G. Now, a couple of results that gives the
application of the “compactification” result to limits of graphs.

Proposition 3. Assume the continuum hypothesis. Let {Gi}i∈I is an infinite sequence of
graphs, with strictly increasing number of vertices, then there exists an infinite I0 ⊆ I such
that {Gi}i∈I0 is q-convergent.

Equivalently, any sequence has a partial convergent subsequence.

Proposition 4. Let {Gi}i∈I is an infinite sequence of graphs in G◦, with strictly increasing
number of vertices, and such that for each F ∈ G,

lim
i→∞
|{h : F → Gi : h is a graph homomorphism}| /

[
|V (Gi)||V (F )|] = cF , cF > 0

then {Gi}i∈I is also q-convergent.
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Equivalently, if the sequence is convergent in the dense sense with positive probabilities
([9]), then it is also q-convergent using the same constants and functions n → n|V (F )| for
each F ∈ G. In this case, the same would be true for the sequences of graphs where the
loops have been removed.

Proposition 5. Let {Gi}i∈I be an infinite sequence of graphs each of which has maximum
degree upper bounded by d, belong to G◦, and the number of vertices is strictly increasing
along the sequence. Assume that, for each graph F ∈ G we have

lim
i→∞
|{h : F → Gi : h is an graph homomorphism}| /|V (F )| = cF , cF > 0

if and only if {Gi}i∈I is q-convergent.

Note that the fact that {Gi}i∈I is a sequence of bounded degree graphs we may ask
whether it converges in the Benjamini-Schramm sense [2]; in this case, by an inclusion-
exclusion argument, the convergence considered in Proposition 5 is equivalent to the local-
convergent considered by Benjamini-Schramm [2]. In this case, the loops ensures a bare
minimum of homomorphisms for each subgraph. Therefore, Proposition 5 claims that,
for bounded-degree graph sequences, Benjamini-Schramm convergence is equivalent to q-
convergent.

Altoghether, Proposition 5 and Proposition 4 shows that the notion of q-convergence
extends the notion of convergence for the limits of graphs in the dense case [9], and the
notion of convergence for in the case of sequences of bounded degree graphs considered
by Benjamini and Schramm [2] into a single, uniform framework. Here we should note
that asking for the constants cF > 0 in the dense case Proposition 4 is rather natural, as
there are many sequences that are convergent in the dense case and that, for instance, have
no triangles (or copies of K3), to the same limit, yet there are several subsequences with
different growth ratios of triangles, and thus the q-convergence will distinguish between
the two subsequences. The q-convergence may distinguish different sequences that the
dense notion considers to be equivalent; this is rather a natural behaviour since we want
to distinguish between sparse sequences that the dense notion of convergence maps to the
zero graphon [9]. The presence of Proposition 3 allows to claim reasonable compactification
properties for the set of q-convergent sequences of graphs.

2 Sketch of the arguments
Let us sketch the proof of Theorem 1 (the key difference in Theorem 2 is highlighted
below). The (positive) real numbers R>0 have the cardinality of the continuum, the set
of sequences of positive reals numbers

∏
i∈ω R>0 has the cardinality of the continuum,

since |
∏

i∈ω R>0| = (c)ℵ0 = (2ℵ0)ℵ0 = 2ℵ0ℵ0 = 2ℵ0 , and the set of ordered injections
I = {ι | ι : ω → ω ordered injection} has the cardinality of the continuum as well (note
that these injections are a subset of all possible subsets of the natural numbers). Therefore,
[
∏

i∈ω R>0]×I the set of infinite subsequences of positive real numbers has the cardinality
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of the continuum. Assuming the continuum hypothesis and the axiom of choice, we can
well-order [

∏
i∈ω R>0]× I and biject it with the countable ordinals (those ordinals < ω1).

Thus we write [
∏

i∈ω R>0]×I = {(fα, ια) | α < ω1} and use a transfinite induction along ω1

to find sets {Aα |α ≤ ω1} that have the desired properties (the sequences of Aα are pairwise
comparable, and each subsequence (fβ, ιβ), with β < α has a representative in Aα). The
sets Aα are built as A0 = ∅ (or A0 = {f0, f1} if we want to show Theorem 2), Aα = ∪β<αAβ
for limit ordinals, and where Aα+1 is build from Aα by adding a new sequence agreeing
uppon (fα, ια) along a subsequence and comparable with the others in Aα; to find this new
sequence we first examine whether there is already a test sequence in Aα that agrees with
(fα, ια) along a subsequence (up to a multiplicative c), if that is the case, then Aα+1 = Aα.
If that is not the case, then we can partition the at most countable (here we are using the
continuum hypothesis again) elements in Aα in two parts U and D, and find a sequence of
subsequences {ια,i}i<ω (ια,i subsequence of ια,i+1) for (fα, ια) such that (fα, ια) is below gi
along ια,i if gi ∈ Aα belongs to U , and is above gj along ια,j if gj ∈ Aα belongs to D. Then
we find a subsequence ια,ω of (fα, ια) along which (fα, ια) is below each element from Aα
in U and above each element in D. Finally, we complete the subsequence along ια,ω into a
full sequence between the elements of U and the elments of D by backwards extending the
elements along the subsequence ια,ω with elements between the lowest found elements in U
and the highest found elements in D (the current element of the subsequence ια,ω ensures
that the multiplicative distance to all the previously considered elements in U and D goes
to 0 and ∞ respectively). The transfinite induction then gives Aω1 .

Proposition 3 is proven finding an appropriate triple (subsequence, constant, test func-
tion) for each finite graph. These test functions capture the asympthotic growth fF for
each subgraph F , consistently along an increasing family of subgraphs F by considering
further subsequences of the graphs {Gi}. Then we use a diagonal argument, similar as be-
fore, to find a subsequence of graphs {Gi} that, for each F , the number of homomorphisms
from F to {Gi} has, along the subsequence of graphs {Gi}, the asympthotic growth fF up
to a multiplicative constant cF .

Proposition 5 and Proposition 4 follows by observing that, with their respective hy-
potheses, the test functions at which the subgraph count of a convergent graph sequence
grow are, up to a multiplicative factor, the minimum and maximum possible (given that
the graphs have loops on each vertex).
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