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Chordal graphs with bounded tree-width
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Abstract
Given t ≥ 2 and 0 ≤ k ≤ t, we prove that the number of labelled k-connected

chordal graphs with n vertices and tree-width at most t is asymptotically cn−5/2γnn!,
as n→∞, for some constants c, γ > 0 depending on t and k. Additionally, we show
that the number of i-cliques (2 ≤ i ≤ t) in a uniform random k-connected chordal
graph with tree-width at most t is normally distributed as n→∞.

The asymptotic enumeration of graphs of tree-width at most t is wide open for
t ≥ 3. To the best of our knowledge, this is the first non-trivial class of graphs with
bounded tree-width where the asymptotic counting problem is solved. Our start-
ing point is the work of Wormald [Counting Labelled Chordal Graphs, Graphs and
Combinatorics (1985)], were an algorithm is developed to obtain the exact number
of labelled chordal graphs on n vertices..
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1 Introduction
Tree-width is a fundamental parameter in structural and algorithmic graph theory, as illus-
trated for instance in [8]. It can be defined in terms of tree-decompositions or equivalently
in terms of k-trees. A k-tree is defined recursively as either a complete graph on k + 1
vertices or a graph obtained by adjoining a new vertex adjacent to a k-clique of a smaller
k-tree. The tree-width of a graph Γ is then the minimum k such that Γ is a subgraph of
a k-tree. In particular, k-trees are the maximal graphs with tree-width at most k. The
number of k-trees on n labelled vertices was independently shown [3, 17, 15] to be(

n

k

)
(k(n− k) + 1)n−k−2 =

1√
2π k! kk+2

n−5/2 (ek)n n! (1 + o(1)), (1)

where the estimate holds for k fixed and n → ∞. However, there are relatively few
results on the enumeration of graphs of given tree-width or on properties of random graphs
with given tree-width. Graphs of tree-width one are forests (acyclic graphs) and their
enumeration is a classical result, while graphs of tree-width at most two are series-parallel
graphs and were first counted in [5]. The problem of counting graphs of tree-width three
is still open. From now on, we will use t to denote the tree-width while k will denote the
connectivity of a graph. All graphs considered in this work will be simple and labelled,
that is, with vertex-set [n].

Given that tree-width is non-increasing under taking minors, the class of graphs with
tree-width at most t is ‘small’ when t is fixed, in the sense that the number gn,t of labelled
graphs with n vertices and tree-width at most t grows at most like cnn! for some c > 0
depending on t (see [18, 13]). The best known bounds for gn,t are, up to lower order terms,(

2ttn

log t

)n

≤ gn,t ≤ (2ttn)n.

The upper bound follows by considering all possible subgraphs of t-trees, and the lower
bound uses a suitable construction developed in [2]. In the present work we determine
the asymptotic number of labelled chordal graphs with tree-width at most t, following the
approach in [14] and [11], and based on the analysis of systems of equations satisfied by
generating functions.

A graph is chordal if every cycle of length greater than three contains at least one
chord, that is, an edge connecting non-consecutive vertices of the cycle. Chordal graphs
have been extensively studied in structural graph theory and graph algorithms (see for
instance [16]), but not so much from the point of view of enumeration. Wormald [20] used
generating functions to develop a method for finding the exact number of chordal graphs
with n vertices for a given value of n. It is based on decomposing chordal graphs into
k-connected components for each k ≥ 1. As remarked in [20], it is difficult to define the
k-connected components of arbitrary graphs for k > 3, but for chordal graphs they are
well defined. It is a consequence of Dirac’s characterisation [10]: in a chordal graph every
minimal separator is a clique.
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For fixed n, t ≥ 1 and 0 ≤ k ≤ t, let Gt,k,n be the set of k-connected chordal graphs
with n labelled vertices and tree-width at most t. Our two main results are the following.

Theorem 1.1. For t ≥ 1 and 0 ≤ k ≤ t, there exist ct,k > 0 and γt,k > 1 such that

|Gt,k,n| = ct,k n
−5/2 γnt,k n! (1 + o(1)) as n→∞.

We remark that in principle, for fixed t and k the constants ct,k and γt,k can be com-
puted, at least approximately.

Theorem 1.2. Let t ≥ 1, 0 ≤ k ≤ t. For i ∈ {2, . . . , t} let Xn,i denote the number of
i-cliques in a uniform random graph in Gt,k,n, and set Xn = (Xn,2, . . . , Xn,t). Then Xn

satisfies a multivariate central limit theorem, that is, as n→∞ we have

1√
n

(Xn − EXn)
d→ N(0,Σ), with EXn ∼ αn and CovXn ∼ Σn,

and where α is a (t−1)-dimensional vector of positive numbers and Σ is a (t−1)× (t−1)-
dimensional positive semi-definite matrix.

Let us point that more structural asymptotic results can be expected. Notably, the
class of chordal graphs with tree-width at most t is subcritical in the sense of [12]. It
follows from [19] that the uniform random connected chordal graph with tree-width at
most t with distances rescaled by 1/

√
n admits the Continuum Random Tree (CRT) [1] as

a scaling limit, multiplied by a constant that depends on t.
A more complete version of the work presented here can be found in [6].

2 Decomposition of chordal graphs
Let k ≥ 1. A k-separator of a graph Γ is a subset of k vertices whose removal disconnects
Γ. And Γ is said to be k-connected if it contains no i-separator for i ∈ [k − 1]. With this
definition, we consider the complete graph on k vertices to be k-connected, for any k ≥ 1,
contrary to the usual definition of connectivity (see for instance [9]). A k-connected com-
ponent of Γ is a k-connected subgraph that is maximal, in term of subgraph containment,
with that property.

An essential consequence of chordality is that k-connected chordal graphs admit a
unique decomposition into (k + 1)-connected components through its k-separators. This
is a generalisation of the well-known decomposition of a connected graph into so-called
blocks, that are maximal 2-connected components. And it induces a system of functional
equations satisfied by the generating function counting chordal graphs of tree-width at
most k.

We now fix some t ≥ 1 and let G be the family of chordal graphs with tree-width at
most t. For a graph Γ ∈ G and j ∈ [t], let us denote by nj(Γ) the number of j-cliques of
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Γ. In the rest of the paper, we will write x as a short-hand for x1, . . . , xt, and define the
multivariate (exponential) generating function associated to G to be

G(x) = G(x1, . . . , xt) =
∑
Γ∈G

1

n1(Γ)!

t∏
j=1

x
nj(Γ)
j .

Let gn denote the number of chordal graphs with n vertices and tree-width at most t.
Then,

G(x, 1, . . . , 1) =
∑
n≥1

gn
n!
xn.

For 0 ≤ k ≤ t + 1, let Gk be the family of k-connected chordal graphs with tree-width
at most t and Gk(x) be the associated generating function. In particular, we have

Gt+1(x) =
1

(t+ 1)!

∏
j∈[t]

x
(t+1

j )
j . (2)

For other values of k, we need to consider graphs rooted at a clique. Rooting the graph
Γ ∈ Gk at an i-clique means distinguishing one i-clique K of Γ and choosing an ordering
of (the labels of) the vertices of K. In order to avoid over-counting, we will discount the
subcliques of K. Let i ∈ [k] and define G(i)

k to be the family of k-connected chordal graphs
with tree-width at most t and rooted at an i-clique. Let then G

(i)
k (x) be the associated

generating function, where now for 1 ≤ j ≤ i the variables xj mark the number of j-cliques
that are not subcliques of the root.

Lemma 2.1. Let k ∈ [t]. Then the following equations hold:

G
(k)
k+1(x) = k!

k−1∏
j=1

x
−(k

j)
j

∂

∂xk
Gk+1(x), (3)

G
(k)
k (x) = exp

(
G

(k)
k+1

(
x1, . . . , xk−1, xkG

(k)
k (x), xk+1, . . . , xt

))
, (4)

Gk(x) =
1

k!

k−1∏
j=1

x
(k
j)

j

∫
G

(k)
k (x) dxk. (5)

Finally, the fact that a graph is the set of its connected components can be translated
as G(x) = G0(x) = exp(G1(x)). Then, it is clear that one can derive G0(x) from Gt+1(x)
by successively using Identities (3), (4) and (5) from Lemma 2.1.

3 Asymptotic analysis
Fix t ≥ 1. To prove Theorems 1.1 and 1.2, we use rather classical methods from [14]
and [11, Chapter 2] which consist in deriving asymptotic estimates from local expansions



Chordal graphs with bounded tree-width 274

of the generating functions from Section 2 at their singularities, typically by applying a
Transfer Theorem (for instance [11, Lemma 2.18]).

However, the main difficulties here are the multivariate nature of Lemma 2.1, in partic-
ular the fact that the local expansions are with respect to different variables from one step
to the next, and the fact that local expansions have to be “carried over” from Gt+1(x) to
G0(x1, 1, . . . , 1). To overcome this, we extend some of the tools and notions present in [11].

Sketch of the proofs of Theorems 1.1 and 1.2. Starting with Gt+1 which is an ex-
plicit monomial, we recursively compute via Lemma 2.1 local representations ofGt, Gt−1, . . . , G1

and finally of G0 = exp(G1).
The first step of the induction amounts to computing a multivariate local representation

of the generating function of t-trees. Let x2, . . . , xt ∈ R+. Then there exist two functions
h1(x) and h2(x), that are analytic and non-zero at x1 = 1/e, such that for x1 ∼ 1/e we
have

Gt(x) =

∏t
j=1 x

(t
j)

j

t!

(
h1(tX) + h2(tX)(1− etX)3/2

)
, where X =

t∏
j=1

x
( t
j−1)

j .

From there, one can prove that the above representation forGt(x) implies corresponding
representation for Gt−1(x), Gt−2(x), . . . , G1(x), then G0(x). And the main counting result
can be deduced by setting x2 = · · · = xt = 1 then applying a Transfer Theorem.

Finally, the joint central limit theorem can be obtained in a similar manner: first
showing that a local representation of Gk(x) can be extended uniformly in a neighbourhood
of (1, . . . , 1) ∈ Ct−1, then concluding with the Quasi-Powers Theorem [11, Theorem 2.22].

4 Concluding remarks
Let us mention a recent result [7] giving an estimate cn−5/2γnn! for the number of labelled
planar chordal graphs with γ ≈ 11.89. It turns pout that the class of chordal graphs with
tree-width at most three is exactly the same as the class of chordal graphs not containing
K5 as a minor, whose asymptotic growth is, according to Theorem 1.1 and some numerical
computations of the form cn−5/2δnn! with δ = 1/ρ3,1 ≈ 12.98.

Since the number of all chordal graphs grows like 2n2/4 (see [4]), the singularity ρt =
ρt,1 → 0 as t → ∞. Concerning the rate of convergence, since the exponential growth of
t-trees is (etn)n, we have ρt = O(1/t). And since the growth of all graphs of tree-width
at most t is at most (2ttn)n, we also have ρt = Ω (1/(t2t)). A remaining problem is to
narrow the gap between the upper and lower bounds. Heuristic arguments suggest that ρt
decreases exponentially in t.

As a final question, we consider letting t = t(n) grow with n. Recall that a class of
labelled graphs is small when the number of graphs in the class grows at most like cnn!
for some c > 0, and large otherwise. One can prove that if t = (1 + ε) log n then the class
of labelled chordal graphs of tree-width at most t is large for each ε > 0. We leave as an
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open problem to determine at which order of magnitude between t = O(1) and t = log n
the class ceases to be small.
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