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Abstract

Given a bipartite graphH = (V = VA∪VB, E) in which any vertex in VA (resp. VB)
has degree at most DA (resp. DB), suppose there is a partition of V that is a refine-
ment of the bipartition VA∪VB such that the parts in VA (resp. VB) have size at least
kA (resp. kB). We prove that the condition DA/kA +DB/kB ≤ 1 is sufficient for the
existence of an independent set of vertices of H that is simultaneously transversal to
the partition, and show moreover that this condition is sharp.
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1 Introduction
Consider the following question: how much easier is it to colour graphs that are bipartite
than to colour graphs in general? Of course, when considered in the context of the usual
chromatic number, this is utterly trivial: compared to the general case, for which the
chromatic number can be ∆(G) + 1 but no larger (with ∆(G) denoting the maximum
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degree of G), the factor of reduction in the number of necessary colours is of order ∆(G).
We treat some settings stronger than that of ordinary proper colouring, settings that have
both classic and contemporary combinatorial motivation.

Recall the definition of the list chromatic number, a notion introduced nearly half
a century ago independently by Erdős, Rubin and Taylor [5] and by Vizing [12]. Let
G = (V,E) be a simple, undirected graph. A mapping L : V (G) → 2Z+ is called a list-
assignment of G; if for some positive integer k, the mapping L satisfies |L(v)| = k for all
v then it is called a k-list-assignment; a colouring c : V → Z+ is called an L-colouring
if c(v) ∈ L(v) for any v ∈ V . We say G is k-choosable if for any k-list-assignment L of
G there is a proper L-colouring of G. The choosability χ`(G) (or choice number or list
chromatic number) of G is the least k such that G is k-choosable.

Framing the above question with respect to the list chromatic number, note first that
a greedy procedure implies χ`(G) ≤ ∆(G) + 1 always, which is exact for G a complete
graph. However, for bipartite G, it is a longstanding conjecture that χ`(G) must be lower
than this bound by a factor of order ∆(G)/ log ∆(G).

Conjecture 1.1 (Alon and Krivelevich [2]). There is some C ≥ 1 such that χ`(G) ≤
C log2 ∆(G) for any bipartite graph G with ∆(G) ≥ 2.

If true, this statement would be sharp up to the value of C, due to the complete bipartite
graphs [5]. For an idea of how stubborn this problem has been, we relate to the reader how
the current best progress was essentially already known to the conjecture’s originators. In
particular, a seminal result for triangle-free graphs of Johansson [8] from the mid-1990’s
implies that χ`(G) = O(∆(G)/ log ∆(G)) as ∆(G)→∞ for any bipartite G, so a reduction
factor only of order log ∆(G).

To stimulate activity, two of the authors with Alon [1, 4] proposed some natural refine-
ments and variations of Conjecture 1.1, and offered modest related progress. Although less
directly relevant to Conjecture 1.1, the present work has the momentum of this trajectory.
We introduce some definitions needed to properly describe this progression. In particular,
we cast the (bipartite) colouring task in a more precise and general way.

Let G and H be simple, undirected graphs. We say that H is a cover (graph) of G
with respect to a mapping L : V (G) → 2V (H) if L induces a partition of V (H) and the
bipartite subgraph induced between L(v) and L(v′) is edgeless whenever vv′ /∈ E(G). If
for some positive integer k, the mapping L satisfies |L(v)| = k for all v, then we call H a
k-fold cover of G (with respect to L). Moreover, if G and H are bipartite graphs, where
G admits a bipartition V (G) = AG ∪ BG and H admits a bipartition V (H) = AH ∪ BH ,
then we say that H is a bipartite cover (graph) of H with respect to L if L(AG) induces
a partition of AH and L(BG) induces a partition of BH , i.e. the bipartitions of G and H
suitably align. We will have reason to be even more specific for this situation by referring
to H as an (A,B)-cover of G (with respect to L). (Here we regard A as the pair (AG, AH)
of partitions, and B similarly.)

To connect the notions above to Conjecture 1.1, notice that, for any list-assignment
L of some graph G, one may construct a cover graph H as follows. The vertices of H
consist of all pairs (v, x) for v ∈ G and x ∈ L(v), and E(H) is a subset of the collection
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of pairs (v, x)(v′, x′) such that vv′ ∈ E(G) and x = x′. By regarding L as a mapping from
v to {(v, x) | x ∈ L(v)}, we can then regard H as a cover graph of G with respect to L.
Moreover, if G is bipartite, the corresponding H is a bipartite cover of G with respect to
L. We refer to any (bipartite) cover graph constructed as above as a (bipartite) list-cover.
Moreover, if E(H) is chosen maximally, we may refer to H as the maximal (bipartite)
list-cover of G with respect to L. Notice that a proper L-colouring of G is equivalent to
an independent set in the corresponding maximal list-cover H that is transversal to the
partition induced by L (that is, it intersects every part exactly once), or, in short, an
independent transversal (IT) of H.

Conjecture 1.1 redux. There is some C ≥ 1 such that, for any bipartite graph G of
maximum degree ∆ ≥ 2, any bipartite (C log2 ∆)-fold list-cover of G admits an independent
transversal.

There are three potential directions to highlight through adoption of the above notation.
First, note that list-covers form a proper subclass of all cover graphs, and so we might
consider the ‘colouring’ task under increasingly more general conditions with respect to
H. More specifically, we may ask analogous questions about sufficient conditions for the
existence of an IT in natural and successively larger superclasses of list-covers (among all
cover graphs). Second, note that if G has maximum degree ∆, then any list-cover of G has
maximum degree ∆, but the converse is not true in general. And, for instance, we may
consider a problem/result about list-colouring in some class of bounded degree graphs and
try to generalise it to the analogous class of bounded degree list-covers. This type of ‘colour-
degree’ problem was introduced by Reed [10]. Third, and specific to (A,B)-covers, we may
insist on a more refined viewpoint by imposing (degree/list-size/structural) conditions on
parts A and B separately. Two of the authors together with Alon [1] introduced this third
asymmetric perspective for studying Conjecture 1.1, and in a follow up [4] they furthermore
took on the first two perspectives, in particular by generalising the problem to so-called
correspondence-covers, which we discuss later. Here we concentrate on the most general
case for (asymmetric, bipartite) cover graphs with given degree bounds.

The following problem was posed in [4] (see therein the special case of Problem 1.1 with
∆A,∆B infinite).

Problem 1.2. Let H be an (A,B)-cover of G with respect to L. What conditions on
positive integers kA, kB, DA, DB suffice to ensure the following? If the maximum degrees in
AH and BH are DA and DB, respectively, and |L(v)| ≥ kA for all v ∈ AG and |L(w)| ≥ kB
for all w ∈ BG, then there is guaranteed to be an independent transversal of H with respect
to L.

We resolve Problem 1.2 through the following sufficient condition for a bipartite cover
graph to admit an IT.

Theorem 1.3. Let H be an (A,B)-cover of G with respect to L. Let positive integers kA,
kB, DA, DB be such that DB

kA
+ DA

kB
≤ 1. If the maximum degrees in AH and BH are DA

and DB, respectively, and |L(v)| ≥ kA for all v ∈ AG and |L(w)| ≥ kB for all w ∈ BG,
then H admits an independent transversal with respect to L.



A precise condition for independent transversals in bipartite covers 266

Figure 1: A bipartite graph with maximum degree 3 and partition classes of size 5 with no
IT

This result is corollary to a general result for independent transversals found in [6].
In fact, the condition in Theorem 1.3 is best possible, as follows.

Theorem 1.4. Let positive integers kA, kB, DA, DB be such that DB

kA
+ DA

kB
> 1. Then

there exists an (A,B)-cover H of G with respect to L such that the maximum degrees in
AH and BH are DA and DB, respectively, and |L(v)| = kA for all v ∈ AG and |L(w)| = kB
for all w ∈ BG, and such that H admits no independent transversal with respect to L.

It is worth isolating the symmetric situation where we maintain that DA = DB = D and
kA = kB = k; in this case the condition in Theorem 1.3 resolves to k ≥ 2D. In other
words, we have the following.

Corollary 1.5. Any bipartite (2D)-fold cover graph of maximum degree D admits an
independent transversal. Moreover, the conclusion may fail if the 2D part size condition is
relaxed to 2D − 1.

This condition coincides with that of a well-known, more general result of the second
author [7]: that any (2D)-fold cover graph of maximum degree D is guaranteed to admit an
IT. As such, one may see Theorem 1.4 as simultaneously a strengthening and generalisation
of a result of Szabó and Tardos [11] (which in turn built upon a series of results beginning
in the original paper of Bollobás, Erdős and Szemerédi [3]): that there exists a (2D − 1)-
fold cover graph of maximum degree D that does not admit an IT. Recalling the question
posed at the beginning, Theorem 1.4 shows in a wider sense how the bipartite assumption
does not help for the existence of ITs in cover graphs.

We remark that, while the construction of Szabó and Tardos is composed of the union of
complete bipartite graphs, its partition classes do not align with a bipartition. Corollary 1.5
affirms that it is possible to achieve such an alignment in some bipartite construction. For
an indication of the difference, Figure 1 depicts the D = 3 construction in Corollary 1.5,
and one can compare it with [11, Fig. 1].

Let us briefly discuss what happens in the special case of correspondence-covers, as
explored in [4]. Given a cover graphH ofG with respect to L, we sayH is a correspondence-
cover if the bipartite subgraph induced between L(v) and L(v′) is a matching for any
vv′ ∈ V (G). In other words, the maximum degree induced between two parts of H with
respect to L is at most 1. Clearly the class of all correspondence-covers strictly includes
that of all list-covers. The next result follows from a ‘coupon collector’ argument, and this
is counterbalanced by a simple probabilistic construction (that was given, for example,
in [9]).
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Theorem 1.6 ([4]). For any ε > 0, the following holds for all D sufficiently large. Any
bipartite (1 + ε) D

logD
-fold correspondence-cover graph of maximum degree D admits an in-

dependent transversal. Moreover, the conclusion fails if the (1 + ε) factor is weakened to a
(1

2
− ε) factor.

One reason for highlighting this case is that it could be interesting to gradually tune
(between 1 and D) the condition on maximum degree induced between two parts of H
with respect to L, in order to gain a better understanding of the transition between the
Θ(D/ logD) (probabilistic) part-size condition in Theorem 1.6 and the Θ(D) condition in
Corollary 1.5 (which was originally established in [7]).

Let us conclude by returning to the original motivation and a related challenge. With
Corollary 1.5 and Theorem 1.6 in mind, the following ‘colour-degree’ generalisation of
Conjecture 1.1 seems worth investigating.

Conjecture 1.7. There is some C ≥ 1 such that any bipartite (C log2D)-fold list-cover
graph of maximum degree D ≥ 2 admits an independent transversal.

To round out the story, we point out how Conjectures 1.1 and 1.7 are essentially equivalent.

Theorem 1.8. If Conjecture 1.1 is true for some constant C ≥ 1, then Conjecture 1.7
is true for some constant C ′ ≥ 1. The same implication holds when C and C ′ are both
replaced by 1 + o(1) (as ∆, D →∞).

Proof. Assume Conjecture 1.1 is true for some C ≥ 1. We choose D0 ≥ 2 such that√
D ≥ C log2D for every D ≥ D0, and take C ′ = 2D0 ≥ 2C2 ≥ 2C. We will prove that

any bipartite (C ′ log2D)-fold list-cover graph of maximum degreeD admits an independent
transversal. Let k = C ′ log2D and H be a k-fold list-cover of maximum degree D ≥ 2.
If D ≤ D0, then k ≥ C ′ ≥ 2D and it then follows from Haxell’s theorem [7] that H has
an independent transversal as desired. We may therefore assume D > D0. Let G be the
‘covered’ graph of H, i.e. uv is an edge of G if and only if L(u) ∩ L(v) is not empty. Then
by definition the maximum degree ∆ of G satisfies D0 ≤ D ≤ ∆ ≤ kD. By the choice of D0

it then follows that
√

∆ ≥ C log2 ∆. Suppose now for a contradiction that k < C log2 ∆.
Then ∆ < D · C log2 ∆ and so D > ∆

C log2 ∆
≥
√

∆. But D >
√

∆ and C ′ ≥ 2C imply that
k = C ′ log2D ≥ C log2 ∆, which is a contradiction. Hence k ≥ C log2 ∆. Now consider
the maximal list-cover H ′ ⊇ H of G with respect to L. By our assumption, H ′ admits an
independent transversal with respect to L, which implies the same conclusion for H, as
required.

The proof for the 1+o(1) version proceeds analogously. Fix ε > 0. Now one can take D0

sufficiently large such that C log2D ≤ Dε and Conjecture 1.1 is true with 1 + ε whenever
∆ ≥ D0. Then for any k-fold list-cover H of maximum degree D ≥ 2, where k ≥ 1+ε

1−ε log2D,
we conclude H has an independent transversal by the same strategy.

In a similar way, nontrivial progress on Conjecture 1.1 may imply nontrivial progress on
Conjecture 1.7. Conversely, lower bound constructions related to Conjecture 1.7 may
directly yield corresponding constructions related to Conjecture 1.1.
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2 A sufficient condition
In this section, we derive Theorem 1.3.

We say that a set U of vertices of a graph G dominates the set W ⊆ V (G) if every
vertex of W has a neighbour in U . (This is a somewhat nonstandard use of the term
since, contrary to the most common usage, here we require each vertex of U ∩W to have
a neighbour in U .) Theorem 1.3 is a straightforward consequence of the following result of
Haxell (see e.g. [6]), concerning critical graphs with respect to ITs.

Theorem 2.1 ([6]). Let H = (VH , EH) be a cover graph of some graph G = (VG, EG) with
respect to L. Suppose that H has no IT but H − e does for any e ∈ EH . Then for any
e ∈ EH , there exists a subset S ⊂ VG and a set Z of edges of the subgraph of H induced by
L(S) such that e ∈ Z, |Z| ≤ |S| − 1, and VH(Z) dominates L(S).

Proof of Theorem 1.3. Suppose H is a counterexample and take it to be edge-minimal.
By Theorem 2.1, there exist some a partition classes of AH and b partition classes of BH ,
and a set Z of edges of size at most a + b − 1 whose end-vertices dominate the union
of these a + b partition classes. The end-vertices of Z dominate at most (a + b − 1)DB

vertices in AH , while the a partition classes contain at least akA vertices. This implies that
akA ≤ (a+ b− 1)DB. Similarly, considering BH , we have bkB ≤ (a+ b− 1)DA. But then

DA

kB
+
DB

kA
≥ b

a+ b− 1
+

a

a+ b− 1
> 1,

contradicting the hypothesis.

3 Sharpness of the condition
A proof of Theorem 1.4 is deferred to the full manuscript associated to this extended
abstract.

Acknowledgement

This work was initiated during a visit by the second author to Nijmegen in April of 2022.
The hospitality of the Department of Mathematics in Nijmegen is gratefully acknowledged.

Open access statement. For the purpose of open access, a CC BY public copyright
license is applied to any Author Accepted Manuscript (AAM) arising from this submission.

References
[1] N. Alon, S. Cambie, and R. J. Kang. Asymmetric list sizes in bipartite graphs. Ann.

Comb., 25(4):913–933, 2021.



A precise condition for independent transversals in bipartite covers 269

[2] N. Alon and M. Krivelevich. The choice number of random bipartite graphs. Ann.
Comb., 2(4):291–297, 1998.

[3] B. Bollobás, P. Erdős, and E. Szemerédi. On complete subgraphs of r-chromatic
graphs. Discrete Math., 13(2):97–107, 1975.

[4] S. Cambie and R. J. Kang. Independent transversals in bipartite correspondence-
covers. Canad. Math. Bull., 65(4):882–894, 2022.

[5] P. Erdős, A. L. Rubin, and H. Taylor. Choosability in graphs. In Proceedings of
the West Coast Conference on Combinatorics, Graph Theory and Computing (Hum-
boldt State Univ., Arcata, Calif., 1979), Congress. Numer., XXVI, pages 125–157,
Winnipeg, Man., 1980. Utilitas Math.

[6] P. Haxell. On forming committees. Amer. Math. Monthly, 118(9):777–788, 2011.

[7] P. E. Haxell. A note on vertex list colouring. Combin. Probab. Comput., 10(4):345–347,
2001.

[8] A. Johansson. Asymptotic choice number for triangle-free graphs. Technical Report
91-5, DIMACS, 1996.

[9] D. Král, O. Pangrác, and H.-J. Voss. A note on group colorings. J. Graph Theory,
50(2):123–129, 2005.

[10] B. Reed. The list colouring constants. J. Graph Theory, 31(2):149–153, 1999.

[11] T. Szabó and G. Tardos. Extremal problems for transversals in graphs with bounded
degree. Combinatorica, 26(3):333–351, 2006.

[12] V. G. Vizing. Coloring the vertices of a graph in prescribed colors. Diskret. Analiz,
29 Metody Diskret. Anal. v Teorii Kodov i Shem:3–10, 101, 1976.


