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Abstract

We provide a new explicit formula enumerating graphs with constraints on their
degrees, such as regular graphs, and extend it to bipartite graphs. It relies on gener-
ating function manipulations and Hadamard products.
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Related work. The most famous graphs with degree constraints are k-regular graphs,
where all vertices have degree k. There are two natural generalizations: graphs with a
given degree sequence, and graphs where all vertices have their degree in a given set. In
this article, we consider the later. There is a large literature on the asymptotic enumeration
[1, 22, 7] and typical structure of graphs with degree constraints [25, 18, 15, 14, 3, 16, 8].
We focus on exact enumeration. The main result in this field is that the generating func-
tion of graphs with their degrees in a given finite set is D-finite, meaning that it is solution
of a differential equation with polynomial coefficients. The previous proofs relied on a
symmetric function approach [13, 12, 23, 24]. It starts by considering the infinite prod-
uct

ś

1ďiăjp1 ` xixjq representing graphs where the degree of vertex i is the power of xi.
Arguments on the D-finiteness of the scalar product of symmetric functions are then ap-
plied. In contrast, we obtain a formula (Theorem 1) for the generating function of those
graphs that is explicit and uses only a finite number of variables (assuming the degrees
are bounded). Our approach relies on direct translation of combinatorial properties into
∗Nokia Bell Labs, supported by the RandNET project, authors presented in alphabetical order.
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generating function equations (symbolic method [2, 11]), and manipulation of those equa-
tions, in particular using Hadamard products. Works of similar spirit include [4, Chapters
3,4,5,7] and [7]. Our expression provides a new proof of D-finiteness, as D-finite series are
stable by Hadamard product [21, 27] and evaluation [28]. Although effective algorithms ex-
ist [5] to compute the differential equation characterizing the generating function of graphs
with degree constraints, they are computationally costly and the differential equation is
only known up to k “ 4 for k-regular graphs. We hope our new formula will allow the
computation of differential equations for k-regular graphs with k ě 5 and fast enumeration
of those graphs [19]. Our results extend to bipartite graphs with different degree sets for
the left and right vertices. For bipartite graphs, we used a multidimensional version of
the Hadamard product, that has been well studied in the literature [9, 20, 26]. To our
knowledge, the asymptotic structure of those graphs has not been investigated [10], and
we hope our work will be a step in that direction.

Structure. We enumerate successively several graph-like families with degree constraints:
weighted multigraphs, loopless weighted multigraphs, weighted graphs and finally graphs in
Theorem 1. They are all depicted in Figure 1. The generating function of the first family
is expressed directly. Then, to go from each family A to the next family B, we first express
the generating function of A using the generating function of B, then invert this relation.
The extension to bipartite graphs is presented in Theorem 2.
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Figure 1: Steps of a possible transformation of a simple graph into a weighted multigraph.
Labels are represented by letters, while weights are represented by integers.

Notations. The nth coefficient of a formal power series is denoted by rzns
ř

m amz
m “ an.

The exponential Hadamard product ([17, Theorem 3], [2, Section 2.1]) is defined as
ˆ

ÿ

n

an
zn

n!

˙

dz

ˆ

ÿ

n

bn
zn

n!

˙

“
ÿ

n

anbn
zn

n!
.

We denote by dz“1 the exponential Hadamard product followed by the evaluation at z “ 1.
Throughout this article, the variable δd marks vertices of degree d. We denote by δ the
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infinite vector pδ0, δ1, δ2, . . .q. The same bold convention extends to other letters. An
interesting particular case is, given a set D of nonnegative integers, to set δd “ 1 if d P D,
and δd “ 0 otherwise. That way, only graphs with all their vertices having degree in D are
counted. We associate to those variables the generating function

∆pz, δq “
ÿ

dě0

δd
zd

d!
.

In the following, we consider graphs with vertices of degree at most D for some D ě 0, so
δj “ 0 whenever j ą D and ∆pz, δq is a polynomial.

1 Weighted multigraphs
Definition. A weighted multigraph G is a finite sequence

G “ pV pGq, E1pGq, E2pGq, . . .q

where V pGq “ t1, 2, . . . , npGqu is the set of npGq vertices, and for all j ě 1, EjpGq is the
finite set of mjpGq edges of weight j

EjpGq “ tpuj,1, vj,1, 1q, . . . , puj,mjpGq, vj,mjpGq,mjpGqqu

where each ui,j and vk,` belongs to V pGq. Thus, vertices are labeled, edges of weight j are
labeled (and have their own independent label set), and all edges are oriented. Furthermore,
loops and multiple edges are allowed. The degree degpuq of a vertex u is defined as the sum
of the weights of all edges adjacent to it, counted twice if they are loops. For examples, in
Figure 1 (d), vertex e has degree 8.

Generating function. We use the variable z to mark the vertices, and for all j ě 1,
we use wj{2 to mark each edge of weight j. This factor 1{2 is here for historical reasons
only [6, Section 2.3]. Additionally, for each d ě 0, the variable δd is introduced to mark
vertices of degree d. The generating function of weighted multigraphs WMGpz,w, δq is
then defined as a sum over all weighted multigraphs

WMGpz,w, δq “
ÿ

G

ˆ npGq
ź

u“1

δdegpuq

˙ˆ

ź

jě1

pwj{2q
mjpGq

mjpGq!

˙

znpGq

npGq!
. (1)

Lemma 1. Let PWMGpx, δq denote the polynomial

PWMGpx, δq “ ∆py, δq dy“1 e
řD

j“1 xjy
j

,

then the generating function of weighted multigraphs is equal to

WMGpz,w, δq “ e
řD

j“1 wjx
2
j {2 dx1“1 ¨ ¨ ¨ dxD“1 e

zPWMGpx,δq.
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Proof. Any weighted multigraph decomposes uniquely as a set of labeled vertices, each
attached to a set of labeled half-edges of weight j, for j ě 1. If the vertex has degree
d, then the sum of the weights of the half-edges attached to it should be d. Then, using
the variable xj to mark the half-edges of weight j, the generating function of such sets is
PWMGpx, δq. If the multigraph contains mj edges of weight j, then after cutting them in
two, we are left with 2mj half-edges of weight j. The symbolic method [11] implies

WMGpz,w, δq “
ÿ

m

p2mq!rx2m
sezPWMGpx,δq

ź

jě1

pwj{2q
mj

mj!
.

This expression is simplified using Hadamard products with the function

ÿ

mě0

p2mq!
pw{2qm

m!

x2m

p2mq!
“ ewx2{2.

A multigraph is loopless if it has no edge containing twice the same vertex. The
generating function LWMGpz,w, δq of those weighted multigraphs is defined by restricting
the sum from Equation (1) to them.

Lemma 2. Let PLWMGpx,w, δq denote the polynomial

PLWMGpx,w, δq “ ∆py, δq dy“1 e
řD

j“1 xjy
j´

řD
j“1 wjy

2j{2,

then the generating function of loopless weighted multigraphs is equal to

LWMGpz,w, δq “ e
řD

j“1 wjx
2
j {2 dx1“1 ¨ ¨ ¨ dxD“1 e

zPLWMGpx,w,δq.

Proof. Any weighted multigraph is uniquely obtained by adding a set of loops on each
vertex of a loopless weighted multigraph. During this operation, any vertex of degree d
becomes a vertex of degree d ` 2k, for some nonnegative integer k, and a set of weighted
loops whose weights sum to k. This corresponds to replacing δd with

δdpη,wq “
ÿ

kě0

ηd`2kry
k
se

1
2

ř

dě1 wdy
d

“
ÿ

jě0

ηjry
j
syde

1
2

ř

dě1 wdy
2d

. (2)

Thus, the generating functions of weighted multigraphs and loopless weighted multigraphs
are linked by the relation

WMGpz,w,ηq “ LWMGpz,w, δpη,wqq

Inverting Equation (2), we obtain

ηdpδ,wq “
ÿ

jě0

δjry
j
syde´

1
2

ř

iě1 wiy
2i
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so

∆pz,ηpδ,wqq “
D
ÿ

d“0

ÿ

jě0

δjry
j
syde´

řD
i“1 wiy

2i{2 z
d

d!
“ ∆py, δq dy“1 e

yz´
řD

i“1 wiy
2i{2.

Given the expression of WMGpz,w, δq from Lemma 1, we deduce

LWMGpz,w, δq “ WMGpz,w,ηpδ,wqq

“ e
řD

j“1 wjx
2
j {2 dx1“1 ¨ ¨ ¨ dxD“1 e

z∆py,ηqdy“1expp
řD

j“1 xjy
jq.

Finally, the properties F px yq dx Gpxq “ F pxq dx Gpx yq and F pxq d ex “ F pxq of the
exponential Hadamard product imply

∆py,ηq dy“1 e
řD

j“1 xjy
j

“ ∆py, δq dy“1 e
yz´

řD
i“1 wiy

2i{2
dy“1 e

řD
j“1 xjy

j

“ ∆py, δq dy“1 e
řD

j“1 xjy
j´

řD
j“1 wjy

2j{2
“ PLWMGpx,w, δq.

2 Graphs
Definitions. A weighted graph G is a finite sequence

G “ pV pGq, E1pGq, E2pGq, . . .q

where V pGq “ t1, 2, . . . , npGqu is the set of npGq vertices, and
Ť

j EjpGq is a finite set of
edges, which are unordered pairs of distinct vertices. EjpGq denotes the set of edges of
weight j and its cardinality is mjpGq. Thus, edges are unoriented and unlabeled, loops
and multiple edges are forbidden. The degree of a vertex is still defined as the sum of the
weights of its adjacent edges.

Unweighted graphs correspond to the case G “ pV pGq, E1pGqq, so Ej “ H for all j ě 2.

Generating function. The generating function of weighted graphs WGpz,w, δq is de-
fined as a sum over all weighted graphs

WGpz,w, δq “
ÿ

G

ˆ npGq
ź

u“1

δdegpuq

˙ˆ

ź

jě1

w
mjpGq
j

˙

znpGq

npGq!
.

This generating function is exponential with respect to the variable z marking the vertices,
and ordinary with respect to the variables pwjqjě1 marking the edges. Note that the
generating function of an edge of weight j is wj (for weighted multigraphs, we used the
convention wj{2, linked to the fact that edges were oriented).
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Lemma 3. For j ě 0, let vjpwq and PWGpx,w, δq denote the polynomials

vjpwq “ ry
j
s log

ˆ

1`
ÿ

jě1

wjy
j

˙

, PWGpx,w, δq “ ∆py, δq dy“1
e
řD

j“1 xjy
j

b

1`
řD

j“1wjy2j
,

then the generating function of weighted graphs is equal to

WGpz,w, δq “ e
řD

j“1 vjpwqx
2
j {2 dx1“1 ¨ ¨ ¨ dxD“1 e

zPWGpx,w,δq.

Proof. Consider a weighted graph G with md edge of weight d for each d ě 1. Then
there exist

ś

d 2mdmd! ways to orient and label those edges to turn G into a weighted
multigraph. Thus, the generating function of loopless weighted multigraphs that contain
no multiple edge is equal to the generating function of weighted graphs. To construct a
loopless weighted multigraph G from a loopless weighted multigraph H without multiple
edges, one replace each edge of H of weight d with a set of edges linking the same vertices
and whose weights sum to d. For each d ě 1, let us use the variable vd to mark edges of
weight d in loopless weighted multigraphs, and the variable wd to mark edges of weight d
in weighted graphs. The previous construction corresponds to replacing the variable wd

with
wdpvq “ ry

d
spe

ř

jě1 vjy
j

´ 1q.

Thus, the generating functions of weighted graphs and of loopless weighted multigraphs
are linked by the relation

WGpz,wpvq, δq “ LWMGpz,v, δq.

Inverting this relation, we obtain

vdpwq “ ry
d
s log

ˆ

1`
ÿ

jě1

wjy
j

˙

and
WGpz,w, δq “ LWMGpz,vpwq, δq.

Injecting the expression of LWMGpz,w, δq from Lemma 2 concludes the proof.

In particular, for w “ pw, 0, 0, . . . , 0q, we recover the case of classical graphs, and more
specifically the case of k-regular graphs, by setting δd “ 1 if d “ k, and δd “ 0 otherwise.
Theorem 1. Let PGpx, w, δq denote the polynomial

PGpx, w, δq “ ∆py, δq dy“1
e
řD

j“1 xjy
j

a

1` wy2
,

then the generating function of graphs is equal to

Gpz, w, δq “ e´
řD

j“1p´wq
jx2

j {p2jq dx1“1 ¨ ¨ ¨ dxD“1 e
zPGpx,w,δq.

In particular, the number of k-regular graphs with n vertices is

e
řk

j“1p´1qj`1x2
j {p2jq dx1“1 ¨ ¨ ¨ dxk“1

˜

ryks
e
řk

j“1 xjy
j

a

1` y2

¸n

.
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3 Bipartite graphs
Definition. A bipartite graph G is a triplet pV pGq, Ṽ pGq, EpGqq with V pGq (resp Ṽ pGq)
the set of labeled left-vertices (resp. right-vertices) and EpGq Ă V pGq ˆ Ṽ pGq the set of
edges.

Generating function. The generating function BGpz, z̃, w, δ, δ̃q of bipartite graphs with
degree at most D is defined as a sum over bipartite graphs

BGpz, z̃, w, δ, δ̃q “
ÿ

G

ˆ |V pGq|
ź

u“1

δdegpuq

˙ˆ |Ṽ pGq|
ź

u“1

δ̃degpuq

˙

w|EpGq| ˆ
z|V pGq|

|V pGq|!
ˆ

z̃|Ṽ pGq|

|Ṽ pGq|!

This generating function is exponential with respect to the variable z (resp. z̃) marking
the left vertices (resp. right vertices), and ordinary with respect to the variable w marking
the edges. For all d, δd (resp. δ̃d) marks the left vertices (resp. right vertices) of degree d.

Notation. The multivariate exponential Hadamard product is defined as

ÿ

m

Am
zm

m!
dm

ÿ

m

Bm
zm

m!
“
ÿ

m

AmBm
zm

m!
.

This extension is compatible with the univariate product in the sense

Apz1qBpz2q dz1z2 Cpz1, z2q “ Apz1q dz1 pBpz2q dz2 Cpz1, z2qq .

Theorem 2. Let v “
`

p´1qd`1wd{d
˘

1ďdďD
, ∆py, δq “

D
ř

d“0

δd
yd

d!
and let PBGpw, δq denote

the polynomial

PBGpw, δq “ ∆py, δq dy“1 e

D
ř

d“1
wdy

d

.

Then the generating function of bipartite graphs with degree constraints is equal to

BGpz, z̃, w, δ, δ̃q “ ezPBGpw,δq
dw“v e

z̃PBGpw,δ̃q.
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