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Abstract
Low treedepth decompositions are central to the structural characterizations of

bounded expansion classes and nowhere dense classes, and the core of main algorithmic
properties of these classes, including fixed-parameter (quasi) linear-time algorithms
checking whether a fixed graph F is an induced subgraph of the input graph G. These
decompositions have been extended to structurally bounded expansion classes and
structurally nowhere dense classes, where low treedepth decompositions are replaced
by low shrubdepth decompositions. In the emerging framework of a structural graph
theory for hereditary classes of structures based on tools from model theory, it is
natural to ask how these decompositions behave with the fundamental model theoretical
notions of dependence (alias NIP) and stability.

In this work, we prove that the model theoretical notions of NIP and stable classes
are transported by decompositions. Precisely: Let C be a hereditary class of graphs.
Assume that for every p there is a hereditary NIP class Dp with the property that the
vertex set of every graph G ∈ C can be partitioned into Np = Np(G) parts in such a
way that the union of any p parts induce a subgraph in Dp and logNp(G) ∈ o(log |G|).
We prove that then C is (monadically) NIP. Similarly, if every Dp is stable, then C
is (monadically) stable. Results of this type lead to the definition of decomposition
horizons as closure operators. We establish some of their basic properties and provide
several further examples of decomposition horizons.
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1 Introduction and Previous Work
In the late 90’s, Baker [2] introduced the shifting strategy, allowing a linear time approxi-
mation scheme for independent sets on planar graphs. The idea is to start a breadth-first
search at a vertex v of a planar graph, which partitions the vertex set of the graph into
layers L1, . . . , Lh and to fix an integer D. Then, for given s ∈ [D], by deleting all the
layers Li with i ≡ s mod D, one gets a graph with treewidth bounded by 3D, on which a
maximum independent set can be found in linear time. Considering all the possible values
of s, we obtain a (1 + 1/D)-approximate solution of the problem. Note that grouping the
layers Li with i in a same class modulo D yields a partition of the vertex set into D parts
V0, . . . , VD−1 such that the union of any p < D of them induces a subgraph with treewidth
at most 3p + 4.

This approach was further developed by DeVos et al. [7], who proved in particular that
for every proper minor closed class of graphs C and every integer p, there exists an integer
Np such that the vertex set of every graph G ∈ C can be partitioned into Np parts, each p
of them inducing a subgraph with treewidth at most p− 1.

This result has been further extended by two of the authors of the present paper in
a characterization of both bounded expansion classes and nowhere dense classes. Before
stating these results, recall that the treedepth of a graph G is the minimum depth of a rooted
forest F , such that G is a subgraph of the closure of F (the graph obtained from F by adding
edges between each vertex and its ancestors). With this definition, the characterization
theorems read as follows.

Theorem 1.1 ([15]). A class C has bounded expansion if and only if, for every parameter p,
there is an integer Np such that the vertex set of each graph G ∈ C can be partitioned into
at most Np parts, each p of them inducing a subgraph with treedepth at most p.

Theorem 1.2 (see [16,17]). A class C is nowhere dense if and only if, for every parameter p
and for every graph G ∈ C there is an integer Np(G) ∈ |G|o(1), such that the vertex set
of G can be partitioned into at most Np(G) parts, each p of them inducing a subgraph with
treedepth at most p.

The notions of classes with bounded expansion and of nowhere dense classes are central
to the study of classes of sparse graphs [16]. Note that the treewidth of a graph is bounded
from above by its treedepth and hence by the result of DeVos et al. [7] and Theorem 1.1
every proper minor closed class has bounded expansion. Surprisingly, it appeared that for
monotone classes of graphs, the notion of nowhere dense class of graphs coincides with
fundamental dividing lines introduced in modern model theory [21]:

Theorem 1.3 ([1]). For a monotone class of graphs C , the following are equivalent:

(1) C is nowhere dense;
(2) C is stable;
(3) C is monadically stable;

(4) C is NIP;
(5) C is monadically NIP.
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For general hereditary classes of graphs, we do not have the collapse of the notions of
stability, monadic stability, NIP, and monadic NIP stated in Theorem 1.3 for monotone
classes. However, we still have the following collapses:

Theorem 1.4 ([5]). A hereditary class of graphs is monadically NIP if and only if it is NIP.
A hereditary class of graphs is monadically stable if and only if it is stable.

The study of monadic stability and monadic NIP and their relations with first-order
transductions [3] opened the way to the study of structurally sparse classes of graphs, that is
of classes of graphs that are first-order transductions of classes of sparse graphs [6,9,10,18–20].
Intuitively, a (first-order) transduction is a way to construct a set of target graphs from the
vertex-colorings of a source graph by fixed first-order formulas, and, by extension, a new
class of graphs from a given class of graphs.

Extending Theorem 1.1, first-order transductions of bounded expansion classes have
been characterized in terms of low shrubdepth colorings. Recall the following high level
characterization of classes with bounded shrubdepth [11, 12]: A class D has bounded
shrubdepth if it is a transduction of a class of bounded depth rooted forests.

Theorem 1.5 ( [10]). A class C is a first-order transduction of a class with bounded
expansion if and only if, for every parameter p, there is an integer Np and a class Dp with
bounded shrubdepth, such that the vertex set of each graph G ∈ C can be partitioned into at
most Np parts, each p of them inducing a subgraph in Dp.

Theorem 1.5 can be seen as a generalization of Theorem 1.1 as shrubdepth is a dense
analogue of treedepth. On the other hand, only one direction of Theorem 1.2 has been
extended to transductions of nowhere dense classes.

Theorem 1.6 ([8]). Let C be a first-order transduction of a nowhere dense class. Then,
for every parameter p there is a class Dp with bounded shrubdepth, such that for every graph
G ∈ C there is an integer Np(G) ∈ |G|o(1), with the property that the vertex set of G can be
partitioned into at most Np(G) parts, each p of them inducing a subgraph in Dp.

Similar decompositions, where p parts induce a subgraph with bounded rankwidth
were introduced in [13], while classes having such decompositions where p parts induce
a subgraph with bounded linear rankwidth were discussed in [20]. However, it was not
known whether such classes are monadically NIP. This question, which appears for instance
in [20, Figure 3] and again in [19], will get a positive answer as a direct consequence of
Theorem 2.1, which is our main result.

The theoretical significance of first-order transductions of nowhere dense classes is
witnessed by the following conjecture.

Conjecture 1.7 ([9]). A class of graphs is monadically stable if and only if it is a first-order
transduction of a nowhere dense class of graphs.

We show that Conjecture 1.7 can be refined as follows.
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Conjecture 1.8. For a hereditary class of graphs C , the following properties are equivalent:
(1) C is a first-order transduction of a nowhere dense class;
(2) C admits low shrubdepth decompositions with no(1) parts;
(3) C is monadically stable;
(4) C is stable.

By Theorem 1.6, property (1) implies property (2). That property (2) implies property
(3) will follow from our main result (Theorem 2.1). By Theorem 1.4, properties (3) and (4)
are equivalent. Closing the chain of implications corresponds to Conjecture 1.7, which we
now can decompose into two weaker statements: that property (3) implies property (2),
and that property (2) implies property (1).

2 Statement of the results
We show that NIP and stability are fixed under taking decompositions as in Theorems 1.1,
1.2, 1.5 and 1.6.

Theorem 2.1. Let C be a hereditary graph class. Suppose that for every parameter p
there is an NIP (resp. stable) class Dp such that for every graph G ∈ C there is an integer
Np(G) ∈ |G|o(1), with the property that the vertex set of G can be partitioned into at most
Np(G) parts, each p of them inducing a subgraph in Dp. Then C is NIP(resp. stable).

In particular, this proves that property (2) implies property (4) in Conjecture 1.8, and so
it follows that Conjectures 1.7 and 1.8 are equivalent. As mentioned after Theorem 1.6, this
also proves that classes admitting low (linear) rankwidth decompositions are monadically
NIP.

To place this theorem in a broader context, we introduce the notion of decomposition
horizons. These seem to be of significant independent interest, and we prove some general
properties. Theorem 2.1 can then be stated as “NIP and stability are decomposition
horizons”.

We define a hereditary class property to be a downset Π of hereditary graph classes, that
is, a set of hereditary classes such that if C ∈ Π and D is a hereditary class with D ⊆ C ,
then D ∈ Π.

Definition 1. Let Π be a hereditary class property, let f : N → N be a non-decreasing
function and let p be a positive integer. We say that a class C has an f-bounded Π-
decomposition with parameter p if there exists Dp ∈ Π such that, for every graph G ∈ C ,
there exists an integer N ≤ f(|G|) and a partition V1, . . . , VN of the vertex set of G with
G[Vi1 ∪ · · · ∪ Vip ] ∈ Dp for all i1, . . . , ip ∈ [N ].

When f is a constant function, we say that C has a bounded-size Π-decomposition with
parameter p; when f is a function with f(n) = no(1), we say that C has a quasi-bounded-size
Π-decomposition with parameter p. If a class C has a bounded-size (resp. a quasi-bounded-
size) Π-decomposition with parameter p for each positive integer p, we say that C has
bounded-size Π-decompositions (resp. quasi-bounded-size Π-decompositions).
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For instance, by Theorem 1.1 and Theorem 1.2, considering the hereditary class prop-
erty “bounded treedepth”, we have that a class C has bounded-size bounded treedepth
decompositions if and only if it has bounded expansion, and it has quasi-bounded-size
bounded treedepth decompositions if and only if it is nowhere dense. With these definition
in hand, it is natural to consider the following constructions of graph class properties:

Definition 2. For a hereditary class property Π we define the properties Π+ (resp. Π∗) as
follows:
• C ∈ Π+ if C has bounded-size Π-decompositions;
• C ∈ Π∗ if C has quasi-bounded-size Π-decompositions.

For every hereditary class property Π, we show that (Π+)+ = Π+ and (Π∗)+ = Π∗

(but we are not aware of any hereditary (NIP) class property Π, such that Π∗ 6= (Π∗)∗).
Also, for every two hereditary class properties Π1 and Π2, we show in the full paper that
(Π1 ∩Π2)

+ = Π+
1 ∩Π+

2 and (Π1 ∩Π2)
∗ = Π∗1 ∩Π∗2, which suggests that, for every hereditary

class property Π, there might exist an inclusion-minimum class Λ with Λ+ = Π+. On
the other hand, if (Πi)i∈I is a family of hereditary class properties indexed by a set I,
then (

⋃
i∈I Πi)

+ =
⋃

i∈I Π+
i and (

⋃
i∈I Πi)

∗ =
⋃

i∈I Π∗i . In particular, the inclusion order of
decomposition horizons is a distributive lattice.

Definition 3. We say that a hereditary class property Π is a decomposition horizon if
Π∗ = Π. If Λ is a hereditary class property, the decomposition horizon of Λ is the smallest
decomposition horizon including Λ.

For example, the hereditary class property of all hereditary classes excluding a fixed
graph H is a decomposition horizon. In the full paper, we also prove that several hereditary
class properties are decomposition horizons, including
• the class properties “bounded maximum degree after deletion of at most k vertices”,
• the class property “transduction of a class with bounded maximum degree” (this

property is equivalent to the model-theoretic property “mutually algebraic” [6], hence
to the model-theoretic property “monadic NFCP” [14]),
• the class property “weakly sparse” (i.e. “biclique-free”) of classes excluding a fixed

biclique as a subgraph,
• the class property “nowhere dense”.
Our examples include an infinite countable chain of decomposition horizons (the class

properties“bounded maximum degree after deletion of at most k vertices”), witnessing some
richness of the inclusion order on decomposition horizons.

While it is natural to conjecture that stable hereditary classes of graphs are exactly
those hereditary classes with quasi-bounded-size bounded shrub-depth decompositions, NIP
hereditary classes seem to be more elusive. It was proved in [4] that for hereditary classes of
ordered graphs, being NIP is equivalent to having bounded twin-width. On the other hand,
classes with quasi-bounded-size bounded twin-width decompositions are NIP (as classes
with bounded twin-width are NIP) and include transductions of nowhere dense classes
(thus, conjecturally, all stable hereditary classes). Hence, it is a natural question whether
every NIP hereditary class has quasi-bounded-size bounded twin-width decompositions.
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