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Abstract

We prove that for any monotone class of finite relational structures, the first-
order theory of the class is NIP in the sense of stability theory if, and only if, the
collection of Gaifman graphs of structures in this class is nowhere dense. This gen-
eralises results previously known for graphs to relational structures and answers an
open question posed by Adler and Adler (2014). The result is established by the ap-
plication of Ramsey-theoretic techniques and shows that the property of being NIP
is highly robust for monotone classes. We also show that the model-checking prob-
lem for first-order logic is intractable on any monotone class of structures that is not
(monadically) NIP. This is a contribution towards the conjecture that the hereditary
classes of structures admitting fixed-parameter tractable model-checking are precisely
those that are monadically NIP.
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1 Introduction
The development of stability theory in classical model theory, originating with Shelah’s
classification programme fifty years ago [12, 2], has sought to distinguish tame first-order
theories from wild ones. A key discovery is that combinatorial configurations serve as
dividing lines in this classification.

Separately, in the development of finite model theory, there has been in interest in inves-
tigating tame classes of finite structures. Here tameness can refer to algorithmic tameness,
meaning that algorithmic problems that are intractable in general may be tractable on
a tame class; or it can refer to model-theoretic tameness, meaning that the class enjoys
some desirable model-theoretic properties that are absent in the class of all finite struc-
tures. See [4] for an exposition of these notions of tameness. The tame classes that arise
in this context are often based on notions taken from the study of sparse graphs [9] and
usually extended to classes of relational structures beyond graphs by applying them to the
Gaifman graphs of such structures.

In the context of algorithmic tameness of sparse classes, this line of work culminated
in the major result of Grohe et al. [7] showing that the problem of model checking first-
order sentences is fixed-parameter tractable (FPT) on any class of graphs that is nowhere
dense. This generalized a sequence of earlier results showing the tractability of the model
checking problem on classes of graphs satisfying other notions of sparsity. Moreover, it is
also known [8] that this is the limit of tractability for monotone classes of graphs. That is
to say that (under reasonable assumptions) any monotone class of graphs in which first-
order model checking is FPT is necessarily nowhere dense. These results underline the
centrality of the notion of nowhere denseness in the study of sparse graph classes.

A significant line of recent research has sought to generalize the methods and results
on tame sparse classes of graphs to more general classes that are not necessarily sparse.
Interestingly, this has tied together notions of tameness arising in finite model theory and
those in classical model theory. Notions arising from stability theory play an increasingly
important role in these considerations (see [10, 6], for example). Central to this connection
is the realisation that for well-studied notions of sparseness in graphs, the first-order theory
of a sparse class C is stable. Thus, stability-theoretic notions of tameness, applied to the
theory of a class of finite structures, generalize the notions of tameness emerging from the
theory of sparsity.

A key result connecting the two directions is that a monotone class of finite graphs is
stable if, and only if, it is nowhere dense. This connection between stability and combinato-
rial sparsity was established in the context of infinite graphs by Podewski and Ziegler [11]
and extended to classes of finite graphs by Adler and Adler [1]. Indeed, for monotone
classes of graphs, stability is a rather robust concept as the theory of such a class is stable
if, and only if, it is NIP, and these conditions on monotone classes are in turn equivalent
to it being monadically stable and monadically NIP.

A question posed by Adler and Adler is whether their result can be extended from
graphs to structures in any finite relational language. We settle this question in the present
paper by establishing Theorem 1 below. In the following Gaif(C) denotes the collection
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of Gaifman graphs of structures in the class C. Note that the extension from graphs to
relational structures requires considerable combinatorial machinery in the form of Ramsey-
theoretic results, which we detail in later sections. We also relate the characterization to
the tractability of the classes. In summary, our key results are stated in the following
theorem.

Theorem 1. Let C be a monotone class of finite structures in a finite relational language.
Then, the following are equivalent:

1. C is NIP;

2. C is monadically NIP;

3. C is stable;

4. C is monadically stable;

5. Gaif(C) is nowhere dense; and

6. (assuming AW[∗] 6= FPT) C admits fixed-parameter tractable model checking.

Moreover, the equivalence of the first six notions also holds for classes containing infinite
structures.

The equivalence of the first four notions for any monotone class C is due to Braunfeld
and Laskowski [3]. The equivalence of the fifth and sixth notions follows by results in
sparsity theory (see [9]). We, therefore, establish the equivalence of the first with the
fifth and the sixth. More precisely, we show that if Gaif(C) is not nowhere dense, then C
admits a formula with the independence property. That nowhere density of Gaif(C) implies
tractability is implicit in [7]. We establish the converse of this statement here.

2 Preliminaries
We assume familiarity with first-order logic and the basic concepts of model theory and
graph theory. Throughout this paper, L denotes a finite, first-order, relational language.
Given an L-structure M , we write Gaif(M) for the Gaifman graph of M , i.e. the graph
on domain M with the property that two elements are adjacent if and only if they appear
together in a relation of M . For a class C of L-structures, we write Gaif(C) for the class
of graphs {Gaif(M) : M ∈ C}. We say that a class C is monotone if it is closed under
weak substructures, i.e. if (M,RM)R∈L ∈ C then (M ′, RM ′

)R∈L ∈ C for any M ′ ⊆ M and
RM ′ ⊆ RM .

We say that a class C of L-structures is NIP (Not the Independence Property) if there
is no L-formula φ(x̄, ȳ) satisfying that for all bipartite graphs G = (U, V ;E) ∈ B there is
some MG ∈ C and sequences of tuples (āi)i∈U and (b̄j)j∈V such that:

MG � φ(āi, b̄j) if, and only if, (i, j) ∈ E.
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Moreover, a class C of graphs is said to be nowhere dense if for every r ∈ N there is some
n ∈ N such that for all G ∈ C we have that K(r)

n is not a subgraph of G, and otherwise, C
is somewhere dense.

By the model checking problem on a class C, we refer to the parametrised decision
problem whereby, given a structure M ∈ C and an FO-sentence φ whose depth acts as
parameter, we want to decide if M satisfies φ. We say that the model checking problem
on a class C is fixed-parameter tractable, if there is an algorithm that decides on input
(M,φ) whether M |= φ, in time f(|φ|) · |M |O(1) for some computable function f . Model
checking on the class of all graphs is complete with respect to the complexity class AW[∗],
which is conjectured to strictly contain the class FPT. We shall assume throughout that
AW[∗] 6= FPT.

3 Main results
Here, we sketch the proofs of implications (1) =⇒ (5) and (6) =⇒ (5) from Theorem 1.
We first prove that for any monotone class C of relational structures whose Gaifman class
is somewhere dense, there is a formula which codes the edge relation of all bipartite graphs
uniformly over C. We work towards this theorem via a preparatory lemma, which has the
benefit of applying to classes that are not necessarily monotone. Intuitively, this tells us
that in any class of relational structures C whose Gaifman class is somewhere dense, there
is a primitive positive formula which codes the edge relation of any complete bipartite
graph with “sufficiently disjoint” witnesses.

Lemma 1. Let C be a class of L-structures such that Gaif(C) is somewhere dense. Then
there is a primitive positive formula φ(x̄, ȳ, z̄) = ∃w̄ψ(x̄, ȳ, z̄, w̄) with parameters p̄, and for
every n ∈ N there is some Mn ∈ C and tuples (āi)i∈[n], (b̄j)j∈[n], (c̄i,j)(i,j)∈[n]2 , (d̄i,j)i,j∈[n]2
from Mn such that the following hold for all i, i′, j, j′ ∈ [n]:

1. Mn |= ψ(āi, b̄j, c̄i,j, d̄i,j);

2. āi(k) 6= āi′(k), for i 6= i′ and all k ∈ [|x̄|];

3. b̄j(k) 6= b̄j′(k), for j 6= j′ and all k ∈ [|ȳ|];

4. c̄i,j(k) 6= c̄i′,j′(k) and c̄i,j(k) 6= c̄i,j(l), for (i, j) 6= (i′, j′) and all k 6= l from [|z̄|];

5. d̄i,j(k) 6= d̄i′,j′(k), for (i, j) 6= (i′, j′) and all k ∈ [|w̄|].

The proof of this lemma is a combinatorial argument, resting on few applications of
different Ramsey theorems. First, we ensure that the subdivided edges coming from the as-
sumption that Gaif(C) is somewhere dense are witnessed in everyMn by the same sequence
of relations R1, . . . , Rk; this requires an application of the finite Ramsey theorem (for local
uniformity within each structure), and of the pigeonhole principle (for global uniformity for
the whole class). Next, by consecutive applications of the canonical Erdős-Rado theorem
(see [5]), we may obtain a finite set of elements that are common in all such relations,
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and ensure that the remaining elements on these are essentially distinct. The level of dis-
jointedness achieved is precisely what allows us, under the additional assumption that C
is monotone, to remove relations so as to turn the encoded complete bipartite graphs into
arbitrary bipartite graphs and violate NIP. Consequently, we establish the following.

Theorem 2. Let C be a monotone class of L-structures such that Gaif(C) is somewhere
dense. Then there is a primitive positive formula φ(x̄, ȳ) = ∃w̄ψ(x̄, ȳ, w̄) with parameters
p̄ and for each bipartite graph G = (U, V ;E) there is some MG ∈ C and sequences of tuples
(āu)u∈U (b̄v)v∈V , (h̄u,v)(u,v)∈E from MG such that:

1. MG |= φ(āu, b̄v) if, and only if, (u, v) ∈ E (so, in particular C is not NIP);

2. If (u, v) ∈ E then MG |= ψ(āu, b̄v, h̄u,v);

3. The equality type of p̄u,v = ā_u b̄
_
v h̄u,v is constant for all (u, v) ∈ E(G);

4. Any two tuples in {āu, b̄v, h̄u,v : u ∈ U, v ∈ V } are disjoint and do not intersect the
parameters p̄.

Next, we prove that any monotone class of relational structures whose Gaifman class is
somewhere dense polynomially interprets the class of all bipartite graphs, and is therefore
intractable. Towards this, we first strengthen Theorem 2 to obtain a “simple path formula"
that performs the encoding; this is essentially a primitive positive formula φ(x̄, ȳ) that
describes a sequence of relation R1, . . . , Rk, with the property that x̄ ⊆ R1 and ȳ ⊆ Rk.
Moreover, having full control over the equality type of the elements inMG allows to obtain
a polynomial-time construction of MG from G.

Lemma 2. Let C be a monotone class of L-structures such that Gaif(C) is somewhere
dense. Then there is a simple path formula φ(x̄, ȳ) with parameters p̄ and a polynomial
time computable function Φ : B→ C, such that for each bipartite graph G = (U, V ;E) ∈ B
there are tuples (āu)u∈U (b̄v)v∈V , (h̄u,v)(u,v)∈E from Φ(G) satisfying:

Φ(G) |= φ(āu, b̄v) if, and only if, (u, v) ∈ E.
With this, we proceed to show intractability for monotone classes with somewhere

Gaifman class. Our proof is essentially based on the proof of [8, Theorem 6.1], which
covers the case of graphs. There, the aim is to definably distinguish the native points of an
r-subdivided graph G from the subdivision points. The idea is to distinguish points by their
degrees; however, while all subdivision points have degree two, other points in G may as
well have degree two. To address this, we first pre-process G to obtain a graph G′ by adding
two pendant vertices to each non-isolated vertex. Then, G is definably recovered from G′,
and moreover, given an r-subdivision of G′, we can definably distinguish the subdivision
points and the remaining points by their degrees. Our construction is essentially the
same, although the degree of a subdivision point is bounded by the length of paths in the
subdivision, rather than by two.

Theorem 3. Let C be a monotone class of L-structures such that Gaif(C) is somewhere
dense, and assume that AW[∗] 6= FPT. Then FO model-checking on C is not fixed-parameter
tractable.
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