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Abstract

We consider the single-conflict coloring problem, in which each edge of a graph
receives a forbidden ordered color pair. The task is to find a vertex coloring such that
no two adjacent vertices receive a pair of colors forbidden at an edge joining them. We
show that for any assignment of forbidden color pairs to the edges of a d-degenerate
graph G on n vertices of edge-multiplicity at most log logn, O(

√
d log n) colors are

always enough to color the vertices of G in a way that avoids every forbidden color
pair. This answers a question of Dvořák, Esperet, Kang, and Ozeki for simple graphs
(Journal of Graph Theory 2021).
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1 Introduction
We consider graphs without loops and possibly with parallel edges. A coloring of a graph
G is a function φ : V (G)→ C that assigns a color from some color set C to each vertex of
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G. In this paper, we consider a special version of graph colorings known as single-conflict
colorings, defined as follows. Let G be a graph, and let C be a color set. Let f be a function
such that for each edge e ∈ E(G) with endpoints u and v, f maps the triple (u, e, v) to a
forbidden color pair (c1, c2), and f maps the triple (v, e, u) to the reverse forbidden color
pair (c2, c1). Then, we say that a (not necessarily proper) coloring φ : V (G) → C is a
single-conflict coloring with respect to f and C if f(u, e, v) 6= (φ(u), φ(v)) for each edge
e = uv of G. We call the image of a triple (u, e, v) under f a conflict, and we call f a
conflict function. If k is the minimum integer for which a graph G always has a single-
conflict coloring for any color set C of size k and any conflict function f , then we say that
k is the single-conflict chromatic number of G, and we write χ=(G) = k.

1.1 Background

Dvořák and Postle [5] first introduced a concept similar to single-conflict coloring, called
DP-coloring. Independently, single-conflict coloring was considered by Fraigniaud, Hein-
rich, and Kosowski [6]1, and the notion of single-conflict chromatic number was later intro-
duced by Dvořák, Esperet, Kang, and Ozeki [4]. In [4], the authors proved the following:

Theorem 1.1 ([4]). If G is a graph of maximum degree ∆, then χ=(G) ≤
⌈√

e(2∆− 1)
⌉
.

In fact, a stronger bound than in Theorem 1.1 with the leading multiplicative constant
of 2 (instead of

√
2e) can be shown. Surprisingly, the factor of 2 is asymptotically sharp,

as shown very recently by Groenland, Kaiser, Treffers, Wales [8]. For simple graphs, an
even better coefficient of 1 + o(1) holds, which can be derived from a result of Kang and
Kelly [11], or from an independent result Glock and Sudakov [7]. The last three cited
results were stated for independent transversals. Another noteworthy result concerning
the single-conflict chromatic number of graphs on surfaces was shown in [4].

Theorem 1.2 ([4]). If G is a simple graph of Euler genus g, then χ=(G) = O((g +
1)1/4 log(g + 2)).

Furthermore, the authors of [4] show that a graph of average degree d has a single-
conflict chromatic number of at least

⌊√
d

log d

⌋
.

The notion of a single-conflict coloring is a generalization of several graph coloring vari-
ants. Most immediately, single-conflict colorings generalize the notion of proper colorings
as follows. Given a graph G, let G(k) denote the graph obtained from G by replacing each
edge of G with k parallel edges. Then, χ(G) ≤ k if and only if G(k) has a single-conflict
coloring with a set C of k colors when each set of k parallel edges in G(k) is assigned k
distinct monochromatic conflicts.

A single-conflict coloring is also a generalization of a DP-coloring, first introduced by
Dvořák and Postle [5] under the name of correspondence coloring. One may define a DP-
coloring of a graph G as a single-conflict coloring of a graph G′ on V (G) which is obtained

1Although [6] was published before [5], the arXiv version of [5] appears approximately two months
before that of [6].



Single-conflict colorings of degenerate graphs 203

as follows. First, for each edge uv ∈ E(G), select a matchingMuv in the complete bipartite
graph C × C. Then, for each edge (c1, c2) ∈ Muv, give G′ an edge e with endpoints u, v
and a conflict f(u, e, v) = (c1, c2). In this way, the single-conflict coloring problem can
represent every instance of a DP-coloring problem.

Furthermore, a single-conflict coloring is a generalization of an earlier concept known as
an adapted coloring, introduced by Hell and Zhu [10], which is defined as follows. Given a
graph G with a (not necessarily proper) edge coloring ψ, an adapted coloring on G is a (not
necessarily proper) vertex coloring φ of G in which no edge e is colored the same color as
both of its endpoints u and v—that is, ¬ (ψ(e) = φ(u) = φ(v)). In other words, if e ∈ E(G)
is a red edge, then both endpoints of e may not be colored red, but both endpoints of e
may be colored, say, blue, and the endpoints of e may also be colored with two different
colors. The adaptable chromatic number of G, written χad(G), is the minimum integer m
such that for any edge coloring of G using a set C of m colors, there exists an adapted
vertex coloring of G using colors of C. It is easy to see that an adapted coloring on G is
a single-conflict coloring on G when each edge e ∈ E(G) is assigned the monochromatic
conflict (ψ(e), ψ(e)). Therefore, for every graph G, χad(G) ≤ χ=(G).

For graphs G of maximum degree ∆, Molloy and Thron [15] show that χad(G) ≤
(1 + o(1))

√
∆. Molloy [13] shows furthermore that graphs G with chromatic number χ(G)

satisfy χad(G) ≥ (1 + o(1))
√
χ(G), implying that

√
χ(G), χad(G), χ=(G), and

√
∆ all

only differ by a constant factor for graphs G satisfying χ(G) = Θ(∆). The parameters√
χ(G), χad(G), and χ=(G) can also differ by a constant factor even when χ(G) is not of

the form Θ(∆). For instance, for graphs G of maximum degree ∆ without cycles of length
3 or 4, the parameters

√
χ(G), χ=(G), and χad(G) are all of the form O

(√
∆

log ∆

)
[2, 14],

and since randomly constructed ∆-regular graphs of girth 5 often have chromatic number
as high as 1

2
∆

log ∆
[14], this upper bound is often tight.

We note that adapted colorings are equivalent to the notion of cooperative colorings,
which are defined as follows. Given a family G = {G1, . . . , Gk} of graphs on a common
vertex set V , a cooperative coloring on G is defined as a family of sets R1, . . . , Rk ⊆ V such
that for each 1 ≤ i ≤ k, Ri is an independent set of Gi, and V =

⋃k
i=1Ri. A cooperative

coloring problem may be translated into an adapted coloring problem by coloring the edges
of each graph Gi ∈ G with the color i and then considering the union of all graphs in G.
Overall, this gives us the following observation.

Observation 1.3. Given a family G = {G1, . . . , Gk} of graphs on a common vertex set,
the cooperative coloring problem on G is equivalent to the adapted coloring problem on the
edge-colored graph G =

⋃k
i=1Gi in which each edge originally from Gi is colored with the

color i.

It is straightforward to show that Theorem 1.1 implies that a graph family G containing
k graphs of maximum degree ∆ on a common vertex set V has a cooperative coloring
whenever k ≥ 2e∆. In fact, Haxell [9] showed earlier that it is sufficient to let k ≥ 2∆.
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1.2 Our results

We have seen that for graphs G of maximum degree ∆, χ=(G) = O(
√

∆). However,
it is natural to ask whether we can obtain a better upper bound when G has bounded
degeneracy. For example, in the related problem of cooperative coloring, Aharoni, Berger,
Chudnovsky, Havet, and Jiang [1] obtained the following improved result by considering
families of 1-degenerate graphs, i.e. forests:

Theorem 1.4 ([1]). If T is a family of forests of maximum degree ∆ on a common vertex
set V , then there exists a value k = (1 + o(1)) log4/3 ∆ such that if |T | ≥ k, then T has a
cooperative coloring.

One key tool used to prove Theorem 1.4 is an application of the Lovász Local Lemma
in which each vertex v ∈ V receives a random inventory Sv of colors from a color set C
indexing the forests in T , and then a color c is deleted from Sv if c also belongs to the
inventory Sw of the parent w of v in the forest of T indexed by c. Dvořák, Esperet, Kang,
and Ozeki [4] also posed the following question, asking whether this upper bound can be
improved for certain degenerate graphs.

Question 1.5. Suppose G is a d-degenerate graph on n vertices. Is it true that χ=(G) =
O(
√
d log n)?

The authors remarked that a positive answer to Question 1.5 would give an alternative
proof of Theorem 1.2. In this paper, we will prove the following theorem, which shows the
upper bound of χ=(G) = O(

√
∆) can often be improved for graphs of bounded degeneracy.

Theorem 1.6. If G is a d-degenerate graph with maximum degree ∆ and edge-multiplicity
at most µ, then

χ=(G) ≤
⌈√

d · 2µ/2+2√µ
√

1 + log((d+ 1)∆)
⌉
.

Theorem 1.6 gives a large class of d-degenerate graphs G satisfying χ=(G) = O(d
1
2

+o(1)),
containing in particular those d-degenerate simple graphs G with maximum degree ∆ =
exp(do(1)). This upper bound is close to best possible, since Molloy [13] shows that d-
degenerate graphs G of chromatic number d+1 satisfy χ=(G) ≥ χad(G) ≥ (1+o(1))

√
d+ 1.

By applying the argument used for Theorem 1.6 to simple graphs, we also obtain the
following theorem.

Theorem 1.7. If G is a d-degenerate simple graph of maximum degree ∆, then

χ=(G) ≤
⌈
2
√
d [1 + log((d+ 1)∆)]

⌉
.

Theorem 1.7 immediately answers Question 1.5 for simple graphs and thus also implies
Theorem 1.2. In fact, the result that we will prove is slightly stronger than Theorem 1.7,
and we will obtain the following corollary, which generalizes Theorem 1.4 at the expense
of a constant factor.
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Corollary 1.8. Let G be a family of k graphs on a common vertex set V . Suppose each
graph G ∈ G is at most d-degenerate and of maximum degree ∆. Then, whenever k ≥
13(1 + d log(d∆)), G has a cooperative coloring.

One natural question is whether the logarithmic factors are necessary in these upper
bounds. While we are unable to answer these questions exactly, we note that an upper
bound of less than d + 1 is unachievable, as Kostochka and Zhu [12] give examples of d-
degenerate graphs G that satisfy χad(G) = d+ 1. Additionally, Question 1.5 remains open
for graphs of large edge-multiplicity.

2 Uniquely restrictive conflicts
It is well known that an oriented graph with maximum out-degree d is d-degenerate. There-
fore, rather than working directly with d-degenerate graphs, we will consider the larger class
of oriented graphs of maximum out-degree d. Given an oriented graph G, we write A(G)
for the set of arcs of G. For a vertex v ∈ V (G), we write A+(v) for the set of arcs outgoing
from v, and we write A−(v) for the set of arcs incoming to v. Given an arc e = uv in an
oriented graph G, and given a conflict function f on G, we will often write f(e) = f(u, e, v).

Consider a color set C and an oriented graph G with a conflict function f . First, given
a vertex v ∈ V (G) and an arc e ∈ A(G) containing v and second endpoint u, we say that
the (v, e) conflict color is the first color appearing in the ordered pair f(v, e, u). We write
cc(v, e) for the (v, e) conflict color. Then, we have the following definition.

Definition 2.1. Let w ∈ V (G). Suppose that for each parallel arc pair e1, e2 ∈ A−(w)
satisfying cc(w, e1) = cc(w, e2), it holds that cc(v, e1) = cc(v, e2), where v is the second
endpoint of e1 and e2. Then, we say f is uniquely restrictive at w. Furthermore, if f is
uniquely restrictive at each w ∈ V (G), then we simply say that f is uniquely restrictive.

An informal way of describing unique restrictiveness would be to say that if we color
a vertex w ∈ V (G) with some color, say red, then we only want this choice of red at w
to contribute to the exclusion of at most one color possibility at each in-neighbor of w.
We note that unique restrictiveness is a rather natural idea, as the conflict functions that
represent adapted coloring and proper coloring problems are uniquely restrictive; indeed,
in both of these settings, choosing the color red at a vertex v can only contribute to the
exclusion of the color red at neighbors of v. Furthermore, DP-coloring problems always give
uniquely restrictive conflict functions when represented as single-conflict coloring problems
since the conflicts between any two vertices form a matching in C × C.

We will also use the following form of the Lovász Local Lemma.

Theorem 2.2 ([16]). Let B be a set of bad events. Suppose that each event B ∈ B
occurs with probability at most p, and suppose further that each event B ∈ B is mutually
independent with all but at most d other events B′ ∈ B. If ep(d+1) ≤ 1, then with positive
probability, no bad event in B occurs.
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With these preliminaries in place, we have the following theorem, which gives an upper
bound on the number of colors needed for a single-conflict coloring of a d-degenerate graph
whose conflict function is uniquely restrictive. Since any conflict function on a simple
graph is uniquely restrictive, the following theorem implies Theorem 1.7 and hence gives an
affirmative answer to Question 1.5. Our main tool for this theorem will be the application
of the Lovász Local Lemma used by Aharoni, Berger, Chudnovsky, Havet, and Jiang [1] in
which each vertex receives a random inventory of colors.

Theorem 2.3. Let G be an oriented graph of maximum degree ∆ with a maximum out-
degree of at most d. Let C be a set of k colors, and let each arc e ∈ A(G) have an associated
conflict f(e) ∈ C2. If f is uniquely restrictive, and if k ≥ 2

√
d [1 + log((d+ 1)∆)], then

G has a single-conflict coloring with respect to f and C.

Proof. First, we note that since every subgraph of G has an average degree of at most
2d, G is (2d)-degenerate and hence has a single-conflict coloring whenever k ≥ 2d + 1.
Therefore, we may assume in our proof that k ≤ 2d.

First, for each vertex v ∈ V (G), we define a color inventory Sv, and for each color
c ∈ C, we add c to Sv independently with probability p = k

2d
≤ 1. Next, we let S ′v be a

copy of Sv. (We will need these copies for technical reasons related to the Lovász Local
Lemma.) Then, for each vertex v ∈ V (G), we consider each outgoing arc e of v, and we
write e = (v, w). If, for some color c ∈ Sv, we have f(e) ∈ {(c, c′) : c′ ∈ Sw}, then we
delete c from S ′v. In other words, if the color c at v contributes to the forbidden pair
f(v, w) = (c, c′) of an outgoing arc (v, w) ∈ A+(v), and if c′ ∈ Sw, then we delete c from
S ′v. Then, for each vertex v ∈ V (G), we let Bv denote the bad event that after this process,
S ′v is empty. We observe that if no bad event occurs, then we may arbitrarily color each
vertex v with a color from S ′v to obtain a single-conflict coloring of G. Indeed, if some arc
(v, w) is colored with a forbidden pair (c, c′) where c ∈ S ′v and c′ ∈ S ′v, then it must follow
that c was actually deleted from S ′v, a contradiction.

Now, given a vertex v ∈ V (G), we calculate the probability that the bad event Bv

occurs. For a given color c ∈ C, we write bc for the number of arcs e ∈ A+(v) for which
c = cc(v, e). If c does not belong to S ′v, then either c was never added to Sv, or c was added
to Sv and then deleted from S ′v. The probability that c was never added to Sv is equal to
1−p, and the probability that c was added to Sv and then deleted from S ′v is at most bcp2.
Therefore, the total probability that c 6∈ S ′v is at most 1− p + bcp

2. Furthermore, since f
is uniquely restrictive, the probabilities of any two given colors being absent from S ′v are
independent. Therefore, the probability of the bad event Bv is at most

∏
c∈C

(
1−

(
p− bcp2

))
< exp

(
−
∑
c∈C

(
p− bcp2

))
= exp

(
−pk + p2

∑
c∈C

bc

)
= exp

(
−pk + p2d

)
.

Substituting p = k
2d
, we see that Pr(Bv) < exp

(
−k2

4d

)
. Furthermore, as the bad event Bv

involves d + 1 vertices (namely v and at most d out-neighbors of v), each of maximum
degree ∆, Bv is dependent with fewer than (d + 1)∆ other bad events. Note that since
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we use unmodified inventories Sw to determine whether the copy S ′v is empty, we prevent
the dependencies of Bv from spreading past the out-neighbors of v. Therefore, using the
Lovász Local Lemma (Theorem 2.2), we see that G receives a single-conflict coloring with
positive probability as long as e(d + 1)∆ exp

(
−k2

4d

)
≤ 1. This inequality holds whenever

k ≥ 2
√
d[1 + log((d+ 1)∆)], which completes the proof.

Using Theorem 2.3, we can prove Corollary 1.8, which gives an upper bound on the
number of colors needed for a cooperative coloring of a family of degenerate graphs. The
proof is available in the full version on arXiv [3].

If G does not have parallel edges, then any conflict function f : E(G) → C2 must be
uniquely restrictive. Then, Theorem 2.3 tells us that χ=(G) ≤ 2

⌈√
d (1 + log((d+ 1)∆))

⌉
,

which gives an affirmative answer to Question 1.5 for simple graphs.

3 General conflicts
Given an oriented graph G with a conflict function f , we define the restrictiveness of f at v
as the maximum value rv for which there exists an rv-tuple of parallel arcs in A+(v) whose
conflicts form a set {(c1, c

∗), (c2, c
∗), . . . , (crv , c

∗)}, where the first entry in each conflict
corresponds to v, where c∗ ∈ C is any single color, and where c1, . . . , crv are all distinct
colors. Then, we say that the restrictiveness of f is the maximum restrictiveness rv of f at
v, taken over all vertices v ∈ V (G). The restrictiveness r of a uniquely restrictive conflict
function satisfies r = 1. If f is a conflict function on a graph G of edge-multiplicity at
most µ, then the restrictiveness r of f satisfies r ≤ µ.

Theorem 2.3 gives an upper bound on number of colors needed for a single-conflict
coloring given a conflict function with restrictiveness r = 1. In this section, we will show in
the following theorem that we can also find an upper bound on the number of colors needed
for a single-conflict coloring given a conflict function whose restrictiveness r is known but
may be greater than 1. Since r ≤ µ for any graph G with edge multiplicity at most µ, the
following theorem (proven in the full version [3]) also proves Theorem 1.6, giving an upper
bound for χ=(G) of d-degenerate graphs G with small edge-multiplicity.

Theorem 3.1. Let G be an oriented graph of maximum degree ∆ with a maximum out-
degree of at most d. Let C be a set of k colors, and let each arc e ∈ A(G) have an associated
conflict f(e). If the restrictiveness of f is at most r, and if

k ≥
√
d · 2r/2+2

√
r
√

1 + log((d+ 1)∆),

then G has a single-conflict coloring with respect to f and C.

Acknowledgements. The authors would like to thank Ladislav Stacho and Jana
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