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Tight path, what is it (Ramsey-)good for?
Absolutely (almost) nothing!

(Extended abstract)
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Abstract
Given a pair of k-uniform hypergraphs (G,H), the Ramsey number of (G,H),

denoted by R(G,H), is the smallest integer n such that in every red/blue-colouring
of the edges of K(k)

n there exists a red copy of G or a blue copy of H. Burr showed
that, for any pair of graphs (G,H), where G is large and connected, the Ramsey
number R(G,H) is bounded below by (v(G) − 1)(χ(H) − 1) + σ(H), where σ(H)
stands for the minimum size of a colour class over all proper χ(H)-colourings of H.
Together with Erdős, he then asked when this lower bound is attained, introducing
the notion of Ramsey goodness and its systematic study. We say that G is H-good
if the Ramsey number of (G,H) is equal to the general lower bound. Among other
results, it was shown by Burr that, for any graph H, every sufficiently long path
is H-good.

Our goal is to explore the notion of Ramsey goodness in the setting of 3-uniform
hypergraphs. Motivated by Burr’s result concerning paths and a recent result of
Balogh, Clemen, Skokan, and Wagner, we ask: what 3-graphs H is a (long) tight
path good for? We demonstrate that, in stark contrast to the graph case, long tight
paths are generally not H-good for various types of 3-graphs H. Even more, we show
that the ratio R(Pn, H)/n for a pair (Pn, H) consisting of a tight path on n vertices
and a 3-graph H cannot in general be bounded above by any function depending only
on χ(H). We complement these negative results with a positive one, determining the
Ramsey number asymptotically for pairs (Pn, H) when H belongs to a certain family
of hypergraphs.
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1 Introduction
A k-uniform hypergraph H, or a k-graph for short, consists of a (finite) set V (H) of
vertices and a set E(H) of k-element subsets of V (H), called (hyper)edges. Given k-
graphs G and H, the Ramsey number of the pair (G,H), denoted by R(G,H), is the
smallest integer n such that, in every red/blue-colouring of the edges of the complete k-
graph K(k)

n , we can find a red copy of G or a blue copy of H. Ramsey’s seminal result [14]
implies that R(G,H) is finite for any pair of k-graphs G and H. Since then, the study
of Ramsey numbers has become a prominent area of research in combinatorics and has
inspired the development of many powerful tools in the field (see for example [9, 13] and
the references therein).

Even in the simplest setting, when the uniformity is two, Ramsey numbers are often
notoriously difficult to understand. The most well-studied case is when G = H = Kt. It is
known from the early work of Erdős [10] and Erdős and Szekeres [11] that, up to lower order
terms, 2t/2 ≤ R(Kt, Kt) ≤ 22t as t→∞; these bounds remained essentially best possible
for several decades, until very recently Campos, Griffiths, Morris, and Sahasrabudhe [6]
announced the first exponential improvement in the upper bound.

Apart from demonstrating the difficulty of understanding Ramsey numbers, this exam-
ple shows that Ramsey numbers can grow very quickly compared to v(G) and v(H). It
is then natural to ask: how small can Ramsey numbers be? Here we will always assume
that G is connected. As shown by Burr [4], following a slightly weaker observation by
Chvátal and Harary [8], for any G and H with v(G) ≥ σ(H)1, we have

R(G,H) ≥ (v(G)− 1)(χ(H)− 1) + σ(H). (1)

Indeed, colour the complete graph of order (v(G) − 1)(χ(H) − 1) + σ(H) − 1 so that the
red edges form χ(H) cliques, one of order σ(H)−1 and the rest of order v(G)−1; it is not
difficult to check that there is neither a red copy of G nor a blue copy of H in this colouring.
A classic result of Chvátal [7] shows that the bound in (1) is attained with equality when
the pair consists of a tree and a complete graph. Motivated by this result, Burr [4] and Burr
and Erdős [5] investigated what other pairs have this property, introducing the notion of
Ramsey goodness. More precisely, a graph G is said to be H-good if the lower bound in (1)
is attained for the pair (G,H). Since its introduction this notion has received considerable
attention (see [9, Section 2.5] and the references therein for some history and results).
Typically in this line of research H is thought of as a fixed graph and the task is to identify
what properties make a (sufficiently large) graph H-good. Several conjectures were made
(for example, by Burr [4] and Burr and Erdős [5]), suggesting that, for a fixed graph H,
every sufficiently sparse large graph G should be H-good. These conjectures turned out to
be false in general, as shown by Brandt [3]. On the other hand, it is known that there are
some families of graphs such that every sufficiently large member is H-good for every H.
In particular, Burr [4] showed that, for any graph H, any sufficiently long path is H-good.

1Here σ(H) is the smallest possible size of a colour class in a proper colouring of H using χ(H) colours.
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More generally, Allen, Brightwell, and Skokan [1] showed that, for every fixed H, every
large graph with bounded bandwidth is H-good.

We are interested in exploring the notion of Ramsey goodness for hypergraphs. Again,
if G is connected2, the lower bound in (1)3 holds for all k-graphs H with v(G) ≥ σ(H).
We say that G is H-good if equality holds in (1).

The study of Ramsey goodness in hypergraphs was first undertaken by Balogh, Clemen,
Skokan, and Wagner [2] and was motivated by a question of Conlon. The n-vertex 3-
uniform tight path Pn consists of n vertices v1, . . . , vn and hyperedges given by vivi+1vi+2

for all i ∈ [n − 2]. Letting F denote the Fano plane, that is, the unique 3-graph on seven
vertices in which every pair of vertices is contained in a unique edge, Conlon asked what
3-graphs are F-good. Balogh, Clemen, Skokan, and Wagner [2] made progress towards
answering this question by showing that any sufficiently long tight path is F-good. In light
of their work and Burr’s result for paths in the graph case [4], we seek to identify what
hypergraphs a tight path is good for. We focus specifically on 3-uniform hypergraphs.

2 Results
For a 3-graph H, we say that H is Ramsey-good for tight paths if every sufficiently long
tight path is H-good. Perhaps surprisingly, it turns out that there are plenty of classes of
3-graphs which are not Ramsey-good for tight paths. It is not difficult to check that the
Fano plane F can be properly 3-coloured so that each hyperedge intersects precisely two
different colour classes and that χ(F) = 3 and σ(F) = 1. The first property is crucial, as
demonstrated by the following proposition.

Proposition 2.1. Let H be a 3-graph with χ(H) = 3 and n ≥ 3σ(H) + 3. Assume that
in every proper 3-colouring of H, there exists an edge intersecting all three colour classes.
Then R(Pn, H) ≥ 2(n− 1) + b1

3
nc > 2(n− 1) + σ(H).

Proof. Let N = 2(n − 1) + b1
3
nc − 1. We first partition the vertex set of K = K

(3)
N into

sets V1, V2, V3 satisfying |V1| = n − 1 = |V2| and |V3| =
⌊
1
3
n
⌋
− 1. We then colour every

hyperedge intersecting exactly two different sets Vi blue and every other hyperedge red.
Suppose there exists a red tight path P on n vertices. Then P contains a matching of

size
⌊
1
3
n
⌋
> |V3|, so one of the matching edges does not intersect V3. This edge must then

be fully contained in some Vi for i ∈ [2], which in turn implies that P is fully contained in
this Vi. Hence v(P ) ≤ |Vi| < n, a contradiction.

To see why there is no blue copy of H, note that, since χ(H) = 3, any blue copy of H
in K must intersect all three sets Vi. But in every proper 3-colouring of H some edge
intersects all three colour classes. Since all edges intersecting all three sets Vi are red, there
cannot exist a blue copy of H in K.

2We say that G is connected if G is not a disjoint union of two smaller hypergraphs.
3As usual, a proper colouring of a hypergraph H is a colouring of the vertices of H such that no edge

of H is monochromatic; χ(H) is the minimum number of colours in a proper colouring of H, and σ(H) is
the smallest possible size of a colour class in a proper colouring of H using χ(H) colours.
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It is possible to obtain a result similar to Proposition 2.1 also when χ(H) > 3. Thus,
from now on, we concentrate on hypergraphs H that have at least one χ(H)-colouring in
which every edge intersects precisely two different colour classes. In fact, we restrict our
attention to a special subclass of hypergraphs of this kind, which we define below.

Definition 1. Let χ ≥ 1 be an integer and Tχ be a tournament on [χ]. We say that a
3-graph H is a tournament hypergraph associated to Tχ if V (H) can be partitioned into
sets A1 ∪ · · · ∪ Aχ so that E(H) = {xyz : x, y ∈ Ai, z ∈ Aj, (i, j) ∈ E(Tχ)}, that is, the
edge set of H consists of precisely those triples containing two vertices from some set Ai
and a third vertex from some set Aj, where (i, j) is an arc of Tχ. For an integer m ≥ 1, we
write H(Tχ,m) for a tournament hypergraph associated to Tχ in which each vertex class Ai
has size m.

Let χ ≥ 1 be an integer, Tχ be a non-transitive tournament on [χ], and H = H(Tχ,m).
It turns out that, in this case, not only is H not Ramsey-good for tight paths, but in fact
the ratio R(Pn, H)/n cannot be bounded above by any function depending only on χ. This
is the content of the next proposition.

Proposition 2.2. Let χ ≥ 3 and m ≥ 2 be integers and Tχ be a non-transitive tournament
on [χ]. Let n, t ≥ 1 be integers such that

⌊
3t
2

⌋
+1 < n. Then R(Pn, H(Tχ,m)) ≥ (m−1)t+1.

Proof. Let N = (m− 1)t. We partition the vertex set of K = K
(3)
N into sets V1, . . . , Vm−1

satisfying |Vi| = t for all i ∈ [m − 1]. We then colour every hyperedge xyz with x, y ∈ Vi
and z ∈ Vj for 1 ≤ i ≤ j ≤ m− 1 red and every other hyperedge blue.

It is not difficult to see that a red tight path in this colouring has at most n − 1
vertices. Indeed, any red tight path must contain either vertices from a single Vi, in which
case it has at most t < n vertices, or b vertices from a set Vi and at most

⌊
b
2

⌋
+ 1 vertices

from Vi+1 ∪ · · · ∪ Vm−1, in which case its number of vertices cannot exceed t+
⌊
t
2

⌋
+1 < n.

Now suppose there is a blue copy H ′ of H in K with vertex classes W1, . . . ,Wχ. For
each j ∈ [χ], we have |Wj| = m, and thus there exists an index kj ∈ [m − 1] such
that |Wj ∩Vkj | ≥ 2. Note that, since the edges fully contained in a single set Vi are red, for
every arc (j, `) of Tχ, no set Vi can contain three vertices x, y, z with x, y ∈ Wj and z ∈ W`.
Therefore, all kj are distinct. But then by the definition of our colouring H ′

[⋃
j∈[χ] Vkj

]
is a tournament hypergraph associated to a transitive tournament, which contradicts the
fact that H is associated to a non-transitive tournament.

Observe that the proof of Proposition 2.2 shows that the same result holds if H is
associated (in a similar way as in Definition 1) to any digraph containing a cycle.

The situation is fairly different when H is a tournament hypergraph associated to a
transitive tournament. We write TT` for the transitive tournament on [`]. Once again, H is
generally not Ramsey-good for tight paths, but as we will soon see, in this case R(Pn, H)/n
can be bounded above by a function depending only on χ(H). Given an integer ` ≥ 1,
let ~R(`) denote the smallest integer N such that any tournament on at least N vertices
contains a copy of TT`. It is well known that ~R(`) is finite for any ` ≥ 1.
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Proposition 2.3. Let χ ≥ 3 be an integer, R = ~R(χ), and m ≥ R. Then H = H(TTχ,m)
satisfies R(Pn, H) ≥

(
2
3
n− 6

)
(R− 1) + 1 = (1 + o(1))2

3
(R− 1)n as n→∞.

Proof. Let TR−1 be a tournament on vertex set [R − 1] that does not contain a copy
of TTχ, which exists by the definition of R. Let N =

(⌊
2
3
n
⌋
− 5
)
(R−1) ≥

(
2
3
n− 6

)
(R−1)

and K = K
(3)
N . Partition the vertex set of K into sets V1, . . . , VR−1 with |Vi| =

⌊
2
3
n
⌋
− 5

for all i ∈ [R − 1]. We now assign the colour red to all edges that are fully contained in
a single set Vi and all edges of the form xyz for x ∈ Vi and y, z ∈ Vj, where (i, j) is an
arc of TR−1. All remaining edges are coloured blue. Note in particular that the blue edges
intersecting precisely two vertex classes form a copy of H(TR−1,

⌊
2
3
n
⌋
− 5).

Using a similar argument as in the proof of Proposition 2.2, we conclude that there is
no red tight path on n vertices. Suppose there exists a blue copy H ′ of H with vertex
classes W1, . . . ,Wχ. Since |Wj| ≥ R for each j ∈ [χ], there exists an integer kj ∈ [R − 1]
such that |Wj ∩ Vkj | ≥ 2. As before, all of these kj are distinct. But then the hyper-

graph H ′
[⋃

j∈[χ] Vkj

]
is a tournament hypergraph associated to TTχ. But TR−1 does not

contain a copy of TTχ, a contradiction.

It turns out that the lower bound in Proposition 2.3 is asymptotically tight as n→∞.
More precisely, we are able to prove the following theorem.

Theorem 2.4. Given integers χ ≥ 2 and m ≥ 2 and a real number ε > 0, there exists an
integer n0 = n0(χ,m, ε) such that, for all n ≥ n0,

R(Pn, H(TTχ,m)) ≤

{
(1 + ε)n if χ = 2,(
2
3
+ ε
)
(~R(χ)− 1)n if χ ≥ 3.

Since ~R(3) = 4, Proposition 2.3 and Theorem 2.4 imply that R(Pn, H(TT3,m)) =
(2 + o(1))n as n→∞. This means that Pn is asymptotically H(TT3,m)-good as n→∞.
In particular, since the Fano plane is a subhypergraph of H(TT3, 4), Theorem 2.4 extends
the result of Balogh, Clemen, Skokan, and Wagner [2] asymptotically to a large family of
3-graphs.

We provide a brief sketch of the proof of Theorem 2.4. Some of the ideas resemble those
used in [2]. The proof uses induction on the chromatic number χ. We outline the induction
step. Suppose χ ≥ 3 and that the theorem holds for χ− 1. Let ε > 0 and m ≥ 2 be given
and H = H(TTχ,m). Set N =

(
2
3
+ ε
)
(~R(χ)−1)n and suppose there is a colouring of K(3)

N

with no red copy of Pn and no blue copy of H.
We first find a red tight path P of length approximately 2

3
n with a special property:

there exist disjoint intervals I1, . . . , Ic covering most vertices of P such that the vertices
of each interval induce a red clique. Our task is then to absorb more vertices from the
rest of K(3)

N in between the vertices of each interval Ij. A key idea here is that, since the
vertices of each Ij form a clique, we can change the order in which they appear on the
path. We then go through the intervals Ij in turn and repeatedly apply the induction
hypothesis to K(3)

N \ V (P ) to find copies of H(TTχ−1,m
′) for some appropriately chosen
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large constant m′. For each such copy H ′ of H(TTχ−1,m
′), either there will be a lot of blue

edges with two vertices in Ij and a third vertex in V (H ′), in which case we can embed a
copy of H, or we will find enough red edges of this kind to allow us to absorb a number
of vertices from V (H ′) into the interval Ij (after possibly rearranging the vertices of Ij).
Eventually, unless we find a blue copy of H, we will be able to absorb approximately 1

2
|Ij|

vertices into each interval Ij, resulting in a tight path of total length at least n.

3 Conclusion and open problems
A number of natural questions arise from our work.

First of all, it would be interesting to determine the Ramsey numbers of more pairs
of the form (Pn, H), for instance, those discussed in Propositions 2.1 and 2.2, at least
asymptotically. Similarly, a natural way to improve Theorem 2.4 and Proposition 2.3 is to
remove the error term and prove a precise result.

In a slightly different direction, in the examples given in Propositions 2.2 and 2.3, our
tournament hypergraphs are fairly dense. It would be interesting to consider subhyper-
graphs of tournament hypergraphs and investigate how sparse such a subgraph H can be
made before (Pn, H) meets the lower bound. We are able to find reasonably sparse hyper-
graphs H, albeit not subgraphs of tournament hypergraphs, such that (Pn, H) exceeds the
general lower bound.

A third possible direction for further research is to consider higher uniformities. Do
long k-uniform tight paths behave similarly to 2-uniform paths or 3-uniform tight paths
as k increases? We note here that we tried to generalise the result of Balogh, Clemen,
Skokan, and Wagner in a different direction, by replacing the Fano plane by a higher-order
projective plane Fq for some prime power q. Surprisingly, long tight paths are generally
not Fq-good. It is a simple exercise to show that, when q ≥ 3, we have χ(Fq) = 2. Then
a result of Keevash and Zhao [12] allows us to build colourings showing that Fq is not
Ramsey-good for tight paths for an infinite sequence of values of q.
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