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Abstract

For graphs G,H1, . . . ,Hr, write G → (H1, . . . ,Hr) to denote the property that
whenever we r-colour the edges of G, there is a monochromatic copy of Hi in colour
i for some i ∈ {1, . . . , r}. Mousset, Nenadov and Samotij proved an upper bound
on the threshold function for the property that G(n, p) → (H1, . . . ,Hr), thereby re-
solving the 1-statement of the Kohayakawa–Kreuter conjecture. We extend upon the
many partial results for the 0-statement, by resolving it for a large number of cases,
which in particular includes (but is not limited to) when r ≥ 3, when H2 is strictly
2-balanced and not bipartite, or when H1 and H2 have the same 2-densities.
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1 Introduction
Let r ∈ N and G,H1, . . . , Hr be graphs. We write G→ (H1, . . . , Hr) to denote the property
that whenever we colour the edges of G with colours from the set [r] := {1, . . . , r} there
exists i ∈ [r] and a copy of Hi in G monochromatic in colour i. Ramsey’s theorem states
that for any H1, . . . , Hr, there exists n0 such that for all n ≥ n0, Kn → (H1, . . . , Hr). Since
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the property G→ (H1, . . . , Hr) is monotone, a result of Bollobás and Thomason [1] implies
that there must exist a threshold function p0 for the property that the binomial random
graph G(n, p) (which has n vertices and contains each possible edge independently with
probability p) satisfies G(n, p) → (H1, . . . , Hr). Rödl and Ruciński [11, 12, 13] famously
located the threshold for the symmetric case, while Kohayakawa and Kreuter [4] gave a
conjecture for the threshold for the asymmetric case.

1.1 Notation

Before we can state these thresholds we require some notation. Let G = (V,E) be a graph.
We denote the number of vertices in G by vG := |V (G)| and the number of edges in G
by eG := |E(G)|. Moreover, for graphs H1 and H2 we let v1 := |V (H1)|, e1 := |E(H1)|,
v2 := |V (H2)| and e2 := |E(H2)|.

Let H be a graph. We define

d(H) :=

{
eH/vH if vH ≥ 1,

0 otherwise;

m(H) := max{d(J) : J ⊆ H}.

We define the arboricity (also known as the 1-density measure) by

d1(H) :=

{
eH/(vH − 1) if vH ≥ 2,

0 otherwise;

ar(H) = m1(H) := max{d1(J) : J ⊆ H}.

In [11], Rödl and Ruciński introduced the following so-called 2-density measure:

d2(H) :=


(eH − 1)/(vH − 2) if H is non-empty with vH ≥ 3,

1/2 if H ∼= K2,

0 otherwise;

m2(H) := max {d2(J) : J ⊆ H} .

We say that H is strictly 2-balanced if for all proper subgraphs J ⊂ H, we have d2(J) <
m2(H).

Regarding asymmetric Ramsey properties, in [4], Kohayakawa and Kreuter introduced
the following asymmetric versions of d2 and m2. Let H1 and H2 be any graphs, and define

d2(H1, H2) :=

{
e1

v1−2+ 1
m2(H2)

if H2 is non-empty and v1 ≥ 2,

0 otherwise;

m2(H1, H2) := max {d2(J,H2) : J ⊆ H1} .
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We say that H1 is strictly balanced w.r.t. d2(·, H2) if for all proper subgraphs J ⊂ H1 we
have d2(J,H2) < m2(H1, H2).

The relevance of strictly balanced graphs is as follows. Let H1, H2 be graphs with
m2(H1) ≥ m2(H2). We call (H1, H2) a heart if

• H2 is strictly 2-balanced,

• when m2(H1) = m2(H2), H1 is strictly 2-balanced,

• when m2(H1) > m2(H2), H1 is strictly balanced w.r.t. d2(·, H2).

It is easy to show that for any pair of graphs (H1, H2) with m2(H1) ≥ m2(H2), there exists
a heart (H ′1, H ′2) with

• H ′i ⊆ Hi for each i ∈ [2],

• m2(H
′
2) = m2(H2),

• m2(H
′
1, H

′
2) = m2(H1, H2) if m2(H1) > m2(H2), and

• m2(H
′
1) = m2(H1) if m2(H1) = m2(H2).

We call this pair a heart of (H1, H2). Now observe that in order to prove that G 6→
(H1, H2), it suffices to prove that G 6→ (H ′1, H

′
2) for some heart (H ′1, H ′2) of (H1, H2), since

any colouring avoiding a monochromatic copy of a subgraph of some H clearly avoids a
monochromatic copy of H itself.

1.2 Previous and new results

We can now state the aforementioned symmetric random Ramsey theorem and asymmetric
random Ramsey conjecture.

Theorem 1.1 (Rödl and Ruciński [11, 12, 13]). Let r ≥ 2 and let H be a non-empty graph
such that at least one component of H is not a star or, when r = 2, a path on 3 edges.
Then there exist positive constants b, B > 0 such that

lim
n→∞

P[Gn,p → (H, . . . , H︸ ︷︷ ︸
r times

)] =

{
0 if p ≤ bn−1/m2(H),

1 if p ≥ Bn−1/m2(H).

Note that the assumption on the structure of H is necessary, see e.g. [8] for details.

Conjecture 1.2 (Kohayakawa and Kreuter [4]). Let r ≥ 2 and suppose that H1, . . . , Hr

are non-empty graphs such that m2(H1) ≥ m2(H2) ≥ · · · ≥ m2(Hr) and m2(H2) > 1. Then
there exist constants b, B > 0 such that

lim
n→∞

P[Gn,p → (H1, . . . , Hr)] =

{
0 if p ≤ bn−1/m2(H1,H2),

1 if p ≥ Bn−1/m2(H1,H2).
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This statement of the conjecture involves a slight rephrasing of the original statement
as per [8], generalising from the case r = 2 and including the assumption of Kohayakawa,
Schacht and Spöhel [5] that m2(H2) > 1. This is in order to avoid possible complications
arising from H2 (and/or H1) being certain forests, such as those excluded in the statement
of Theorem 1.1.

The progress on Conjecture 1.2 so far is as follows.

Theorem 1.3. The 1-statement of Conjecture 1.2 holds ([8]). Further, the 0-statement
of Conjecture 1.2 holds for (H1, . . . , Hr) in each of the following cases. For some heart
(H ′1, H

′
2) of (H1, H2), we have that:

(i) H ′1 and H ′2 are both cycles ([4]);

(ii) H ′1 and H ′2 are both cliques ([7]);

(iii) H ′1 is a clique and H ′2 is a cycle ([6]);

(iv) H ′1 and H ′2 are a pair of regular graphs, excluding the cases when (a) H ′1 is a clique
and H ′2 is a cycle; (b) H ′2 is a cycle and v′1 ≥ v′2; (c) (H ′1, H ′2) = (K3, K3,3) ([3]).

Note that (i)–(iii) above were only stated for (H1, H2) of the precise form of (H ′1, H ′2)
stated (i.e. for (i), with H1 and H2 themselves both cycles). However, note that each such
pair is a heart itself, so the theorem, via the remark at the end of Section 1.1, extends to
the cases indicated.

Our main result is that we can vastly extend the number of cases for which the 0-
statement holds:

Theorem 1.4. The 0-statement of Conjecture 1.2 holds for the following cases:

(i) When r ≥ 3, i.e. we have at least 3 graphs H1, H2, H3;

(ii) When m2(H1) = m2(H2);

(iii) When there exists a heart (H ′1, H ′2) of (H1, H2) such that χ(H ′2) ≥ 3 or m(H ′2) > 2
or ar(H ′2) > 2.

We remark that Kuperwasser and Samotij announced independently a proof of case (ii)
above at Random Structures and Algorithms 2021/2022.

In the rest of this extended abstract, we shall outline the proof strategy of Theorem 1.4.

2 Proof strategy
Suppose that G is a graph with constant size and m(G) ≤ m2(H1, H2). It is easy to show
that for p = cn−1/m2(H1,H2), with at least constant probability, G will appear as a subgraph
of Gn,p. Therefore, it better be the case that G 6→ (H1, H2). It is natural to ask whether
this is in fact the only obstruction in proving a 0-statement.
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Question 2.1. Does it suffice to prove that for all G,H1, H2 with m2(H1) ≥ m2(H2) > 1
and m(G) ≤ m2(H1, H2) we have G 6→ (H1, H2), in order to prove the 0-statement of
Conjecture 1.2?

Further, recalling the definition of hearts earlier, observe that we only need to prove
such a statement for (H1, H2) which are hearts.

In the symmetric setting, the answer to this question is yes. Additionally, in [9], Ne-
nadov et al. showed that this same phenomenon occurs for a number of symmetric Ramsey-
style properties. Therefore, naturally, there have been attempts to answer this question in
the asymmetric setting. The first result on this question was given by Gugelmann et al. [2],
who additionally proved their result extends to the setting of k-uniform hypergraphs.

Theorem 2.2 ([2]). Let (H1, H2) be a heart. If

(i) a certain family of graphs F(H1, H2) is so-called ‘asymmetric-balanced’,

(ii) for all G such that m(G) ≤ m2(H1, H2) then G 6→ (H1, H2),

then the 0-statement holds for any pair of graphs with heart (H1, H2).

See [2] for the precise description of property (i). The next major step was made
by the third author, who was inspired by the proof techniques used in [7] for proving
Theorem 1.3(ii).

Theorem 2.3 ([3]). Let (H1, H2) be a heart. If there exists ε > 0 such that

(i) a certain family of graphs Â(H1, H2, ε) is finite,

(ii) for all G ∈ Â(H1, H2, ε) (which in particular satisfy m(G) ≤ m2(H1, H2) + ε) we
have G 6→ (H1, H2),

then the 0-statement holds for any pair of graphs with heart (H1, H2).

By streamlining the approach of the third author, we are able to prove the desired
results.

Theorem 2.4. Let (H1, H2) be a heart. There exists a family B̂(H1, H2) ⊆ Â(H1, H2, 0)
such that if

(i) B̂(H1, H2) is finite,

(ii) for all G ∈ B̂(H1, H2) we have G 6→ (H1, H2),

then the 0-statement holds for any pair of graphs with heart (H1, H2).

Theorem 2.5. Let (H1, H2) be a heart. Then B̂(H1, H2) is finite.
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Combining Theorems 2.4 and 2.5 shows that the answer to Question 2.1 is yes. In the
next section we will give a description of the families Â(H1, H2, ε) and B̂(H1, H2) in the
case of m2(H1) = m2(H2).

Now it suffices to prove the colouring result contained in Question 2.1. Note that in the
symmetric setting, this colouring result holds in all cases and has a short proof (see e.g.
Theorem 3.2 in [10]). By appropriately generalising this result, we can prove the following
cases of the asymmetric statement.

Lemma 2.6. For all G,H1, H2 with m2(H1) ≥ m2(H2) > 1 and m(G) ≤ m2(H1, H2), we
have G 6→ (H1, . . . , Hr) if any of the following conditions are satisfied:

(i) We have r ≥ 3, i.e. at least 3 graphs H1, H2, H3;

(ii) We have m1(H2) = m2(H2);

(iii) We have χ(H2) ≥ 3 or m(H2) > 2 or ar(H2) > 2.

Theorem 1.4 immediately follows from Theorems 2.4 and 2.5 combined with Lemma 2.6.
Note that the assumption in Theorem 2.5 that (H1, H2) is a heart is actually necessary.
This leads to the slightly technical nature of the set of graphs given in Theorem 1.4.

2.1 More details on Theorems 2.4 and 2.5

In the case where m2(H1) = m2(H2), we have G ∈ Â(H1, H2, ε) if G satisfies

• every edge e = E(R) ∩ E(L) for some R ∼= H1 and L ∼= H2, where L,R ⊆ G;

• m(G) ≤ m2(H1, H2) + ε;

• G is 2-connected.

For ` ≥ 4, define CK4
` to be the graph on 3` vertices and 6` edges obtained by taking a

cycle C` and extending each of its edges to a copy of K4. This graph satisfies that every
edge is the intersection of two triangles, m(CK4

` ) = m2(K3, K3) = 2 and is 2-connected,
and therefore the family Â(K3, K3, ε) is not finite for any ε > 0.

The key idea is to refine the family Â(H1, H2, ε) so that graphs such as CK4
` are excluded.

We now describe B̂(H1, H2) in the case where m2(H1) = m2(H2). Call an edge e open
in G if e 6= E(R) ∩ E(L) for any R ∼= H1 and L ∼= H2, where R,L ⊆ G. Define
λ(G) := vG − eG/m2(H1, H2). We have that B̂(H1, H2) is the collection of all outputs
G that can be returned in the running of algorithm Grow-B̂-Alt (see the figure below)
which additionally satisfy m(G) ≤ m2(H1, H2).

It is not too hard to see that B̂(H1, H2) ⊆ Â(H1, H2, 0), and further, CK4
` 6∈ B̂(K3, K3).

The proof of Theorem 2.4 follows from a careful analysis which is very similar to the
proof of Theorem 2.3 in [3]. So finally, we summarise how we prove Theorem 2.5.
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1: procedure Grow-B̂-Alt(H1, H2)
2: G0 ← H1

3: i← 0
4: while λ(Gi) ≥ 0 do
5: if ∃e ∈ E(Gi) s.t. e is open then
6: {L,R} ← any pair {L,R} s.t. L ∼= H2, R ∼= H1 and E(L) ∩ E(R) = {e}
7: Gi+1 ← Gi ∪ L ∪R
8: i← i+ 1
9: else
10: return Gi

11: e← any edge of Gi

12: {L,R} ← any pair {L,R} s.t. L ∼= H2, R ∼= H1, E(L) ∩ E(R) = {e}
and E(L) ∪ E(R) 6⊆ E(Gi)

13: Gi+1 ← Gi ∪ L ∪R
14: i← i+ 1
15: end if
16: end while
17: end procedure

Figure 1: The implementation of algorithm Grow-B̂-Alt.

Let η(G) be the number of open edges in G. First note that if G is an output of the
algorithm Grow-B̂-Alt, then it satisfies λ(G) ≥ 0 and η(G) = 0. Suppose the following
is true:

There exist constants κ, x, y > 0 depending only on H1 and H2 such that in each
iteration of the algorithm Grow-B̂-Alt, we either have:

(I) λ(Gi) ≤ λ(Gi−1)− κ and η(Gi) ≥ η(Gi−1)− x;

(II) λ(Gi) = λ(Gi−1) and η(Gi) ≥ η(Gi−1) + y.

Then, letting T i
1 and T i

2 count the number of iterations of type I and type II, respectively,
to construct Gi, we obtain η(Gi) ≥ T i

2 · y − T i
1 · x. Overall this implies that the number

of outputs of the algorithm Grow-B̂-Alt is finite, as required. This is the essence of how
we prove finiteness of B̂, however our actual approach involves more technical definitions
we wish to avoid here.

For the case where m2(H1) > m2(H2), the algorithm describing the family B̂(H1, H2)
is more complicated, but the overall idea is the same.
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