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Abstract

The analogue of Hadwiger’s Conjecture for the immersion relation states that ev-
ery graph G contains an immersion of Kχ(G). For graphs with independence number 2,
this is equivalent to stating that every such n-vertex graph contains an immersion of
K⌈n/2⌉. We show that every n-vertex graph with independence number 2 contains
every complete bipartite graph on ⌈n/2⌉ vertices as an immersion.
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1 Introduction
A central problem in graph theory is guaranteeing dense substructures in graphs with a
given chromatic number. Hadwiger’s Conjecture [13] is one of the most important examples
of this pursuit, stating that every loopless graph G contains the complete graph Kχ(G) as a
minor (where χ(G) is the chromatic number of G), thus aiming to generalize the Four Color
Theorem. This difficult conjecture is known to hold whenever χ(G) ≤ 6 [27], and it is open
for the remaining values. Thus, a natural approach is to study whether it holds whenever G
is restricted to a particular class of graphs. A class of graphs that has received particular
attention (and yet remains open) is that of graphs with independence number 2. A recent
survey of Seymour [28] emphasizes the importance of this case, which was first remarked
by Mader (see [24]). Plummer, Stiebitz, and Toft [24] gave an equivalent formulation of
Hadwiger’s Conjecture for such graphs: every n-vertex graph with independence number 2
contains a minor of K⌈n/2⌉. Before that, in 1982, Duchet and Meyniel [8] had shown a
result that implies that every such graph contains a minor of K⌈n/3⌉. Despite much work,
see e.g. [11, 14, 15, 32], it is still open whether there is a constant c > 1/3 such that
every graph with independence number 2 contains a minor of K⌈cn⌉. Given the difficulty
to obtain a clique minor on ⌈n/2⌉ vertices, Norin and Seymour [23] recently turned into
finding dense minors on this amount of vertices. They proved that every n-vertex graph
with independence number 2 contains a (simple) minor of a graph H on ⌈n/2⌉ vertices and
0.98688 ·

(|V (H)|
2

)
− o(n2) edges.

The focus of this paper is a conjecture related to Hadwiger’s, concerned with finding
graph immersions in graphs with a given chromatic number; this type of substructure is
defined as follows. To split off a pair of adjacent edges uv,vw amounts to deleting those
two edges and adding the edge uw. A graph G is said to contain an immersion of another
graph H if H can be obtained from a subgraph of G by splitting off pairs of edges and
deleting isolated vertices. Notice then that if G contains H as a subdivision, it contains H
as an immersion (and as a minor). Immersions have received increased attention in recent
years, see e.g. [6, 9, 20, 21, 22, 31], particularly since Robertson and Seymour [26] proved
that graphs are well-quasi-ordered by the immersion relation. Much of this attention has
been centered around the following conjecture of Abu-Khzam and Langston [1], which is
the immersion-analog of Hadwiger’s Conjecture.

Conjecture 1 (Abu-Khzam and Langston [1]). Every loopless graph G contains an im-
mersion of Kχ(G).

The above conjecture holds whenever χ(G) ≤ 4 because Hajós’ subdivision conjec-
ture holds in this case, actually giving a subdivision of Kχ(G) [7]. The cases where
χ(G) ∈ {5, 6, 7} were verified independently by Lescure and Meyniel [19] and by De-
Vos, Kawarabayashi, Mohar, and Okamura [5]. In general, a result of Gauthier, Le, and
Wollan [12] guarantees that every graph G contains an immersion of a clique on ⌈χ(G)−4

3.54
⌉

vertices. This result improves on theorems due to Dvořák and Yepremyan [10] and DeVos,
Dvořák, Fox, McDonald, Mohar, and Scheide [4].



Biclique immersions in graphs with independence number 2 171

The case of graphs with independence number 2 has also received attention in regard
to Conjecture 1. In particular, Vergara [30] showed that, for such graphs, Conjecture 1 is
equivalent to the following conjecture.

Conjecture 2 (Vergara [30]). Every n-vertex graph with independence number 2 contains
an immersion of K⌈n/2⌉.

As evidence for her conjecture, Vergara proved that every n-vertex graph with inde-
pendence number 2 contains an immersion of K⌈n/3⌉. This was later improved by Gauthier
et al. [12], who showed that every such graph contains an immersion of K2⌊n/5⌋. This last
result was extended to graphs with arbitrary independence number [3]. Additionally, Ver-
gara’s Conjecture has been verified for graphs with small forbidden subgraphs [25]. The
main contribution of this paper is the following result, which states that graphs with in-
dependence number 2 contain an immersion of every complete bipartite graph on ⌈n/2⌉
vertices.

Theorem 3. Let G be an n-vertex graph with independence number 2, and ℓ ≤ ⌈n/2⌉ − 1
be a positive integer. Then G contains an immersion of Kℓ,⌈n/2⌉−ℓ.

Using an argument due to Plummer et al. [24] we can show that this implies the
following.

Corollary 4. Let G be a graph with independence number 2, and 1 ≤ ℓ ≤ χ(G) − 1.
Then G contains an immersion of Kℓ,χ(G)−ℓ.

This result leads us to make the following conjecture, which holds trivially when ℓ = 1.

Conjecture 5. If 1 ≤ ℓ ≤ χ(G)− 1, then G contains an immersion of Kℓ,χ(G)−ℓ.

We denote by Ka,b,c the graph that admits a partition into parts of sizes a, b, and c such
that any pair of these parts induces a complete bipartite graph. In addition to Corollary 4,
as evidence for Conjecture 5, we can prove the following strengthening of the case ℓ = 2.

Proposition 6. If χ(G) ≥ 3, then G contains K1,1,χ(G)−2 as an immersion.

We note that Conjecture 5 has its parallel in the minor order. Woodall [33] and,
independently, Seymour (see [18]), proposed the following conjecture: every graph G with
ℓ ≤ χ(G)− 1 contains a minor of Kℓ,χ(G)−ℓ. In [33], Woodall showed that (the list-coloring
strengthening of) his conjecture holds whenever ℓ ≤ 2. Kostochka and Prince [18] showed
that the case ℓ = 3 holds as long as χ(G) ≥ 6503. Kostochka [16] proved it for every ℓ as
long as χ(G) is very large in comparison to ℓ, and later [17] improved this so that χ(G)
could be polynomial in ℓ, namely, whenever χ(G) > 5(200ℓ log2(200ℓ))

3 + ℓ. In fact, the
results in [16, 17, 18] obtain the full join K∗

ℓ,χ(G)−ℓ, which is the graph obtained from the
disjoint union of a Kℓ and an independent set on χ(G) − ℓ vertices by adding all of the
possible edges between them. This and the above-cited result of Norin and Seymour leads
us to make the following conjecture.



Biclique immersions in graphs with independence number 2 172

Conjecture 7. Let G be an n-vertex graph with independence number 2, and 1 ≤ ℓ ≤
⌈n/2⌉ − 1. Then G contains a minor of Kℓ,⌈n/2⌉−ℓ.

Note that the result of Kostochka leaves open the balanced case, thus not implying
Conjecture 7. Moreover, it is not hard to build a graph that is denser than the minor
obtained by the result of Norin and Seymour, and yet does not contain K⌊n/4⌋,⌈n/4⌉: take a
complete graph on ⌈n/2⌉ vertices and delete ⌊n/4⌋+ 1 edges incident to the same vertex.
Thus Conjecture 7 is not implied by this result either.

The rest of the paper is organized as follows. In Section 1.1 we give a few definitions
and present an interesting lemma that is used to prove Theorem 3 in Section 2. Due to
space limitations, we only present a sketch of the proof. We refer the interested reader
to [2] for its details.

1.1 Preliminaries and notation

Let G be a graph. For v ∈ V (G) and S ⊆ V (G), we define E(v, S) = {vu ∈ E(G) : u ∈ S}.
If A and B are disjoint sets, we let KA,B be the complete bipartite graph with bipartition
(A,B). A substructure (subgraph, immersion, minor, etc.) is a clique if it is a complete
graph, and is a biclique if it is a complete bipartite graph. In a manner that is equivalent
to the definition given in the introduction, we say that a graph G contains an immersion
of H if there exists an injection f : V (H) → V (G) and a collection of edge-disjoint paths
in G, one for each edge of H, such that the path Puv corresponding to the edge uv has
endpoints f(u) and f(v).

Finally, in our proof, we make use of the following lemma, which we believe to be
interesting by itself, and that we could not find in the literature.

Lemma 8. Let j ≤ k be positive integers, and let C1, . . . , Cj ⊆ [n] be sets of size k. Let A
be a set of size k disjoint from [n]. Then there are disjoint matchings M1, . . . ,Mj in KA,[n]

such that Mi matches A with Ci for every i ∈ [j].

2 Outline of the proof of Theorem 3
Indeed, we can consider graphs with independence number at most 2. The proof follows
by induction on n + ℓ. Let G be an n-vertex graph with α(G) ≤ 2 and let ℓ ≤ ⌈n/2⌉ − 1
be a positive integer. Note that the result is easy when n ≤ 4, so we can assume n ≥ 5.
Note also that it suffices to prove the statement in the case G is edge-critical, i.e., that the
removal of any edge of G increases its independence number. Now, if n ≤ 4ℓ − 2, then
⌈n/2⌉ − ℓ ≤ 2ℓ− 1− ℓ < ℓ. Thus, by induction there is an immersion of Kℓ′,⌈n/2⌉−ℓ′ in G,
where ℓ′ = ⌈n/2⌉ − ℓ. But this is the desired immersion because K⌈n/2⌉−ℓ,⌈n/2⌉−⌈n/2⌉+ℓ is
isomorphic to K⌈n/2⌉−ℓ,ℓ. Thus, from now on, we assume that n ≥ 4ℓ− 1.

Now, suppose that G contains two non-adjacent vertices, say x and y, with at least
ℓ − 1 common neighbors, and let G′ = G − x − y. If ℓ ≤ ⌈n/2⌉ − 2 = ⌈(n − 2)/2⌉ − 1,
the induction hypothesis guarantees that G′ contains an immersion of Kℓ,⌈(n−2)/2⌉−ℓ, which
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we call H ′. Otherwise, if we have ℓ = ⌈n/2⌉ − 1 we let H ′ be an arbitrary set of ℓ
vertices. Let L and B be the parts of H ′ having size ℓ and ⌈n/2⌉− 1− ℓ, respectively, and
let R = V (G′) \ (L ∪ B). As α(G) = 2, every vertex in G′ is either adjacent to x or to y
in G. This is true in particular for the vertices in L. In what follows, we add either x or y
to B, in order to obtain the desired immersion of Kℓ,⌈n/2⌉−ℓ. This is immediate if x or y is
adjacent to every vertex in L. Thus we may assume that |E(y, L)|, |E(x, L)| < ℓ. Now, let
Lx (resp. Ly) be the set of vertices in L adjacent to x but not to y (resp. to y but not to
x); Lc be the set of vertices in L adjacent to both x and y; and Oc be the set of vertices
adjacent to both x and y that are not in L. As x is adjacent to every vertex in Lx ∪ Lc,
it is enough to find (edge-disjoint) paths from x to Ly without using edges of H ′. Notice
that |Ly| + |Lc| = |E(y, L)| ≤ ℓ − 1 and that, by hypothesis, we have |Lc| + |Oc| ≥ ℓ − 1.
Thus |Oc| ≥ |Ly|. Let Oc = {o1, o2, . . . , o|Oc|} and Ly = {ℓ1, ℓ2, . . . , ℓ|Ly |}. For 1 ≤ i ≤ |Ly|,
we take the path xoiyℓi. These paths are as desired. Therefore, we may assume that
|N(u) ∩N(v)| ≤ ℓ− 2 for every pair of non-adjacent vertices u, v.

2.1 Consequences of edge-criticality

Recall that G is edge-critical, meaning that the removal of any edge uv ∈ E(G) creates an
independent set of size 3. Hence, for such an edge there is a vertex w that is not adjacent
to both u and v. We formalize this argument in the following claim.

Claim 9. For any u, v ∈ V (G), we have uv ∈ E(G) if and only if N [u] ∪N [v] ̸= V (G).

For the rest of the proof, we fix two non-adjacent vertices x and y, and partition V (G)
as follows:

▷ C = N(x) ∩N(y), the set of common neighbors of x and y;

▷ X = N [y], the set of non-neighbors of y excluding y, which contains x; and

▷ Y = N [x], the set of non-neighbors of x excluding x, which contains y.

We observe that |C| ≤ ℓ− 2, and that each of X and Y induces a complete subgraph of G,
otherwise we could find an independent set of size 3. Moreover, the edge-criticality of G
yields the following claim.

Claim 10. For every vertex a ∈ C, we have X, Y ⊈ N(a).

2.2 Key vertex sets

Let XC ⊆ X (resp. YC ⊆ Y ) be the set containing vertices v ∈ X (resp. v ∈ Y ) for which
C ⊂ N(v), and put XC = X \XC (resp. Y C = Y \ YC). Now, given a vertex a in C, we
denote by Xa (resp. Ya) the set of vertices in X (resp. in Y ) that are adjacent to a, and put
Xa = X \Xa and Y a = Y \ Ya. Notice that if v ∈ Xa and w ∈ Y a, then v and w must be
adjacent, as the independence number of G is 2. Thus we get KXa,Y a

as a subgraph of G.
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Note that XC ⊆ Xa and XC ⊇ Xa (resp. YC ⊆ Ya and Y C ⊇ Y a) for every a ∈ C. Indeed,
we have XC =

⋂
a∈C Xa (resp. YC =

⋂
a∈C Ya) and XC =

⋃
a∈C Xa (resp. Y C =

⋃
a∈C Y a).

The following claim gives bounds and relations on the sizes of some of these sets. This
control is the key to build the desired immersion.

Claim 11.

1. Given a ∈ C, we have that |XC | ≤ |Xa| ≤ ℓ−2 and |YC | ≤ |Ya| ≤ ℓ−2. Furthermore,
we have |Xa| ≥ ⌈n/2⌉ − |Y |+ 3 and |Y a| ≥ ⌈n/2⌉ − |X|+ 3.

2. For every v ∈ XC (resp. w ∈ Y C), we have |N(v) ∩ Y C | > ⌈n/2⌉ − |X| (resp.
|N(w) ∩XC | > ⌈n/2⌉ − |Y |).

2.3 Constructing the immersion

The rest of the proof is divided into two cases which depend on the sizes of XC and Y C .
The sets that form the bipartition of the immersion depend on which case we are dealing
with. The construction requires more care in the case one of XC , Y C is large, which we
sketch here. Say, without loss of generality, that |XC | ≥ ℓ. For the rest of the proof, we
fix a ∈ C. By Claim 11(1), we can choose Y ∗ ⊂ Y a with |Y ∗| = ⌈n/2⌉ − |X|, and since
|XC | ≥ ℓ, we can choose X∗ ⊂ XC \Xa with |X∗| = ℓ − |Xa|. Using Claim 11(1) again,
we can show that

|X∗| ≤ |Y ∗|. (1)

Since X, Y , and Xa ∪ Y a induce cliques, G contains all edges joining (i) vertices in Xa

to vertices in Y ∗; (ii) vertices in Xa to vertices in Xa \ X∗; and (iii) vertices in X∗ to
vertices in Xa \X∗. It remains to find edge-disjoint paths joining vertices in X∗ to vertices
in Y ∗. For these paths, we only use edges that are incident to vertices in Y and not
to vertices in Xa; this assures that they are disjoint from the edges already used. Let
X∗ = {v1, v2, . . . , v|X∗|} and Y ∗ = {y1, y2, . . . , y|Y ∗|}. The first step is to use Lemma 8
to find paths joining each vertex vi to all vertices in Y ∗ allowing edges between vertices
of Y ∗ to be used at most twice. Nevertheless, the intersections are relatively few and
with a combination of different techniques, we are able to fix them and obtain the desired
immersion.

Claim 12. For each i ∈ {1, 2, . . . , |X∗|}, there is a subgraph K(vi) which contains an
immersion of Kvi,Y ∗ and satisfies that:

i) each path of K(vi) with an endpoint in vi has length at most 2;

ii) for each path vizyj in K(vi) we have z ∈ Y C; and

iii) if i ̸= j and uw ∈ E(K(vi)) ∩ E(K(vj)), then there is no r /∈ {i, j} such that uw ∈
E(K(vr)), and one path containing uw ends at u while the other ends at w.
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Proof. Note that, since X∗ ⊆ XC , Claim 11(2) assures that for each i ∈ {1, 2, . . . , |X∗|},
we have |N(vi) ∩ Y C | > ⌈n/2⌉ − |X| = |Y ∗|. In order to use Lemma 8, we define, for
each such i, a set Ni ⊂ N(vi) ∩ Y C with |Ni| = |Y ∗|, and a set of auxiliary vertices
A = {a1, a2, . . . , a|Y ∗|} with N(aj) = Y C . By (1), we can apply Lemma 8 to N1, . . . , N|X∗|
together with A to obtain disjoint matchings M1,M2, . . . ,M|X∗| such that Mi matches A
to Ni, for i ∈ {1, . . . , |X∗|}. Let Mi = {zi,1a1, . . . , zi,|Y ∗|a|Y ∗|} where zi,j ∈ Ni for every i, j.

For each vi ∈ X∗, we obtain K(vi) by using yj whenever aj is used in a matching. In
other words, for every 1 ≤ j ≤ |Y ∗|, if zi,jaj ∈ Mi, then we use the path vizi,jyj. Notice
that zi,j could be yj itself. When that is the case, we use the path viyj. Formally, we define

P (i, j) =

{
vizi,jyj if yj ̸= zi,j

viyj if yj = zi,j .

Notice that P (i, j) may not be edge-disjoint from P (i, k) if k ̸= j, but this can only happen
if P (i, j) = viykyj and P (i, k) = viyjyk. If that is the case, we redefine P (i, j) as viyj and
P (i, k) as viyk. Thus, after doing all the necessary changes, we can assume that P (i, j) is
disjoint of P (i, k) whenever j ̸= k. Finally we define K(vi) =

⋃|Y ∗|
j=1 P (i, j) and since the

P (i, j)’s are edge disjoint each K(vi) contains an immersion of Kvi,Y ∗ and clearly satisfies
items i) and ii).

Furthermore, as M1, . . . ,M|X∗| are disjoint matchings, if uw ∈ E(K(vi))∩E(K(vj)) for
some pair i ̸= j, then it must be that u,w ∈ Y ∗. Let u = yh and w = yk. Then either
zi,h = yk or zi,k = yh. Assume, w.l.o.g., that zi,h = yk. This means that zi,hah = ykah ∈ Mi.
Thus ykah /∈ Mr for r ̸= i. This, in turn, implies that zj,k = yh, which means that yhak ∈ Mj

and yhak /∈ Mr for r ̸= j. This proves iii).

Let K(v1), . . . , K(v|X∗|) be the subgraphs given by Claim 12. We would like the vi, Y
∗-

paths on these subgraphs to be the X∗, Y ∗-paths in our immersion. Yet, if i ̸= j, K(vi)
might not be edge disjoint from K(vj). Fortunately, by Claim 12 iii) the intersections are
restricted, which we can show to be sufficient for fixing them.
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