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Abstract

We study the Localization game on locally finite graphs and trees, where each
vertex has finite degree. As in finite graphs, we prove that any locally finite graph
contains a subdivision where one cop can capture the robber. In contrast to the finite
case, for n a positive integer, we construct a locally finite tree with localization num-
ber n for any choice of n. Such trees contain uncountably many ends, and we show
this is necessary by proving that graphs with countably many ends have localization
number at most 2. We finish with questions on characterizing the localization number
of locally finite trees.
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1 Introduction
Pursuit-evasion games are most commonly studied on finite graphs, but various studies
have also considered the infinite case, such as [3, 12, 14, 15]; see also Chapter 7 of [6]. In
this extended abstract, we present the first study of the Localization game on locally finite
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graphs, where the degree of each vertex is finite. Unlike in the finite case, the robber may
avoid capture in locally finite graphs by moving along an infinite path.

The Localization game was first introduced for one cop by Seager [16, 17], and was
subsequently studied in several papers such as [1, 4, 5, 7, 8, 9]. The game consists of two
players playing on a graph. One player controls a set of k cops and the other controls
a single robber. The players play over a sequence of discrete time-steps; a round of the
game is a move by the cops and the subsequent move by the robber. The players move on
alternate time-steps, with the robber going first. The robber occupies a vertex of the graph,
and when the robber is ready to move during a round, they may move to a neighboring
vertex or remain on their current vertex. The cops’ move is a placement of cops on a set
of vertices. Note that the cops are not limited to moving to neighboring vertices. In each
round, the cops occupy a set of vertices u1, u2, . . . , uk, and each cop sends out a cop probe.
Each cop probe returns the distance from ui to the robber. The cops win if they have a
strategy to determine, after a finite number of rounds, the location of the robber, at which
time we say that the cops capture the robber. We assume the robber is omniscient, in the
sense that they know the entire strategy for the cops. The robber wins by evading capture
indefinitely. For a graph G, the localization number of G, written ζ(G), is the smallest
cardinal for which k cops have a winning strategy. As locally finite graphs are countable,
ζ(G) is either a positive integer or the first infinite cardinal, ℵ0.

We present new results on the localization number of locally finite (that is, every vertex
has finitely many neighbors) graphs and trees, paying particular attention to whether
results persist or change from the finite case. As in finite graphs, we prove that any locally
finite graph contains a subdivision where one cop can capture the robber. In contrast
to the finite case, we construct a locally finite tree with localization number n for any
choice of n, where n is a positive integer or ℵ0. These constructions contain uncountably
many “infinite branches” or ends. We show that, as in the finite case, trees with countably
many ends have localization number of at most two. We close with open questions about
characterizing the localization number of locally finite trees.

All graphs considered are simple, connected, and locally finite. The reader is directed
to [2, 11] for additional background on graph theory and infinite graphs.

2 Results
Although determining the localization number for general graphs is NP-hard [7], the fol-
lowing theorem of Seager characterizes the Localization game on finite trees. Let T3 be the
tree depicted in Figure 1.

Figure 1: The graph T3.
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Theorem 1 ([17]). If T is a finite tree, then ζ(T ) = 1 if and only if T is T3-free, and
otherwise, ζ(T ) = 2.

The Localization game on locally finite trees has received far less attention. While
proving a result for finite graphs, Haselgrave, Johnson, and Koch gave the first theorem
extending the Localization game to an infinite tree.

Theorem 2 ([13]). The infinite ∆-regular tree T∆ satisfies ζ(T∆) ≥ b∆2

4
c.

As a consequence of Theorems 1 and 2, we note that locally finite trees offer a richer
spectrum of localization numbers than finite trees. In our first contribution, we show that
for any choice of n, including ℵ0, there is a locally finite tree with localization number n.

Theorem 3. If n is a positive integer or n = ℵ0, then there is a locally finite tree T with
ζ(T ) = n.

While the full proof of Theorem 3 will be given in the full paper, we sketch it here.
Fix n > 2 an integer. For locally finite trees T with ζ(T ) = n, consider the subdivision of
the infinite n(n − 1)-regular tree, where each edge is subdivided n − 1 times. A set of n
cops can spend n− 1 rounds determining which subtree contains the robber. This allows
them to move n vertices towards the robber, who can only move n − 1 away, so the cops
eventually overtake and capture the robber. The robber can evade n − 1 cops by playing
on an unprobed branch for at least n rounds. This guarantees the robber can choose any
fixed distance d to stay from every probe, avoiding capture. For the case of n = ℵ0, note
that Theorem 2 allows us to construct a graph on which the robber can evade any finite
number of cops.

Theorem 2 tells us the infinite n(n−1)-regular tree requires Ω(n4) cops, but subdividing
reduced the number of required cops to n. This technique was studied in finite graphs,
where it is known that every finite graph G has a subdivision G′ such that ζ(G′) = 1;
see [10]. An analogous result holds for locally finite graphs.

Theorem 4. For every locally finite graph G, there is a subdivision G′ of G such that
ζ(G′) = 1.

Unlike in the approach given in [10] in the finite case, we subdivide different edges a
different number of times. We defer the complete proof to the full paper.

Locally finite trees have infinite paths where the robber may evade capture. Bearing
this in mind, we use the setting of ends to formalize our approach to the localization
number of locally finite trees. A ray is an infinite one-way path. An end is an equivalence
class of rays with the property that for any finite set of vertices S, each equivalent ray is in
the same component of G− S. Different ends can be separated by removing finitely many
vertices, matching our concept of separate infinite branches. The theory of ends in general
locally finite graphs is complex (see [11]); in the context of locally finite trees, however,
we may view an end as an infinite branch of the tree with finite subtrees attached to each
vertex.
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The locally finite trees considered so far all contain the infinite binary tree as a minor,
and such graphs have uncountably many ends. Containing the infinite binary tree as a
minor is equivalent to having uncountably-many ends [11].

In the full paper, we will prove the following.

Theorem 5. If T is a locally finite tree with finitely many ends, then ζ(T ) ≤ 2.

Perhaps surprisingly, two cops still have a winning strategy in case there are countably
many ends.

Theorem 6. If T is a locally finite tree with countably many ends, then ζ(T ) ≤ 2.

For the proof of Theorem 6, we use transfinite induction on a certain ordinal labeling
of ends. The base case for the induction uses Theorem 5.

Proof. Given a locally finite rooted tree T and the corresponding tree order where for
u, v ∈ V (T ), u < v if and only if u is on the unique path from v to the root, a recursive
pruning is a labeling of the vertices of T by ordinals where the collection of vertices that
receive ordinal α are those which, after removing all vertices with label β < α, have up-
closures that form chains. In other words, after pruning all vertices labeled so far, assign
label α to all vertices after the point where any path or ray starting at the root stops
branching. We let Tα be the tree resulting from pruning all vertices with label β < α, and
note that the process of recursive pruning ensures Tα is connected for all α.

For more background on recursive prunings, we direct the reader to [11, Chapter 8].
Trees have a recursive pruning if and only if they do not contain a subdivision of the infinite
binary tree [11, Proposition 8.5.1]; such trees are the only examples of “infinite branching”
where some vertices cannot be labeled. Thus, every rooted tree with countably many ends
has a recursive pruning.

Consider an ordinal labeling of the vertices of T by a recursive pruning. Each end of
T contains a ray such that the labels of vertices along that ray are weakly decreasing;
otherwise, there would be some α for which Tα is not connected. Since decreasing sets of
ordinals are finite, each such ray only contains vertices with finitely many labels, and thus,
among those labels that occur infinitely often, one must be largest. If ε is an end of T ,
then we call the largest label that occurs infinitely often on the corresponding ray the end
label of ε.

We claim that if an ordinal α is the supremum of the end labels among the (possibly
countably many) ends of T , then there are finitely many ends with end label α. After
pruning vertices that received label α, the resulting tree Tα+1 is connected. If Tα+1 is
empty, then Tα contained no vertices of degree greater than two and thus contained at
most two ends, each of which had end label α. If Tα+1 contains finitely many vertices,
then as T is locally finite, each vertex was adjacent to finitely many rays where each vertex
received label α, and so there are finitely many such ends. Finally, if Tα+1 contains infinitely
many vertices, it must contain an end [11, Proposition 8.2.1], and the vertices on that end
must receive a label larger than α, so α was not the supremum of the end labels.
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We next show that the supremum α of the end labels is in fact a maximum. Let
α1, α2, . . . infinite be a strictly increasing sequence of ordinals such that there are ends
ε1, ε2, . . . where εi has end label αi. We will show there is at least one end with end label
β such that for all i, β > αi; therefore, every infinite chain of increasing end labels has a
maximal element. By Zorn’s lemma, T has an end with maximum end label.

To find an end with end label β, first note that for every end εi, we can find an infinite
ray ri beginning at some arbitrarily chosen root of T , say v0, which belongs to the end
εi. As T is locally finite, v0 has finitely many neighbors. One of these neighbors say v1,
must be contained in ri for infinitely many i. We repeat this compactness-type argument
to find a ray v0v1 · · · such that each vertex is contained in infinitely many of the ri. Each
vi must, therefore, receive a label larger than each αi. Hence, the end containing this ray
must have end label β > αi for each i.

We prove that two cops have a winning strategy by transfinite induction on the largest
end label in the recursive pruning of T . For the base case, if T contains no ends, or if the
largest end label is 1, then given that there are finitely many ends with end label 1, the
result follows from Theorem 5.

Assume now that the theorem holds if the largest end label is strictly less than α and
let T be a tree with the largest end label α. By implementing a strategy similar to that
used to prove Theorem 5, two cops repeatedly restrict the robber’s access to ends with
label α until the robber is trapped on a subgraph with ends which have label less than
α. At this point, the cops have a winning strategy by the induction hypothesis, and the
theorem follows.

3 Further Directions
Given Theorem 6, it is natural to ask if there is a version of Theorem 1 for locally finite
trees with countably many ends. Unlike in the finite case, T3 is not the only obstruction
to a locally finite tree having localization number one. One example is the doubly infinite
comb graph T∞

1 consisting of a double ray with a leaf attached to each vertex; see Figure 2.

· · · · · ·

Figure 2: The graph T∞
1 .

The tree T∞
1 is locally finite, T3-free tree satisfying ζ(T∞

1 ) = 2. We may show that the
tree T∞

1 is minimal in the sense that deleting any edge results in a tree T with ζ(T ) = 1.
An interesting problem is determining the minimal locally finite trees with countable (or
even finite) ends and localization number 2.
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