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Abstract

We prove that for any ε > 0, for any large enough t, there is a graph G that admits
no Kt-minor but admits a (32 − ε)t-colouring that is “frozen” with respect to Kempe
changes, i.e. any two colour classes induce a connected component. This disproves
three conjectures of Las Vergnas and Meyniel from 1981.
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1 Introduction
In an attempt to prove the Four Colour Theorem in 1879, Kempe [7] introduced an ele-
mentary operation on the colourings1 of a graph that became known as a Kempe change.
Given a k-colouring α of a graph G, a Kempe chain is a maximal bichromatic component2.
A Kempe change in α corresponds to swapping the two colours of a Kempe chain so as to
obtain another k-colouring. Two k-colourings are Kempe equivalent if one can be obtained
from the other through a series of Kempe changes.
∗The authors are supported by ANR project GrR (ANR-18-CE40-0032)
†CNRS, LaBRI, Université de Bordeaux, Bordeaux, France.
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1Throughout this paper, all colourings are proper, i.e. no two vertices with the same colour are adjacent.
2If a vertex of G is coloured 1 and has no neighbour coloured 2 in α, then it forms a Kempe chain of

size 1.
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The study of Kempe changes has a vast history, see e.g. [13] for a comprehensive
overview or [3] for a recent result on general graphs. We refer the curious reader to the rel-
evant chapter of a 2013 survey by Cereceda [19]. Kempe equivalence falls within the wider
setting of combinatorial reconfiguration, which [19] is also an excellent introduction to.
Perhaps surprisingly, Kempe equivalence has direct applications in approximate counting
and applications in statistical physics (see e.g. [15, 14] for nice overviews). Closer to graph
theory, Kempe equivalence can be studied with a goal of obtaining a random colouring by
applying random walks and rapidly mixing Markov chains, see e.g. [20].

Kempe changes were introduced as a mere tool, and are decisive in the proof of Vizing’s
edge colouring theorem [21]. However, the equivalence class they define on the set of k-
colourings is itself highly interesting. In which cases is there a single equivalence class?
In which cases does every equivalence class contain a colouring that uses the minimum
number of colours? Vizing conjectured in 1965 [22] that the second scenario should be true
in every line graph, no matter the choice of k. Despite partial results [1, 2], this conjecture
remains wildly open.

In the setting of planar graphs, Meyniel proved in 1977 [12] that all 5-colourings form a
unique Kempe equivalence class. The result was then extended to all K5-minor-free graphs
in 1979 by Las Vergnas and Meyniel [11]. They conjectured the following, which can be
seen as a reconfiguration counterpoint to Hadwiger’s conjecture, though it neither implies
it nor is implied by it.

Conjecture 1.1 (Conjecture A in [11]). For every t, all the t-colourings of a graph with
no Kt-minor form a single equivalence class.

They also proposed a related conjecture that is weaker assuming Hadwiger’s conjecture
holds.

Conjecture 1.2 (Conjecture A’ in [11]). For every t and every graph with no Kt-minor,
every equivalence class of t-colourings contains some (t− 1)-colouring.

Here, we disprove both Conjectures 1.1 and 1.2, as follows.

Theorem 1.3. For every ε > 0 and for any large enough t, there is a graph with no
Kt-minor, whose (3

2
− ε)t-colourings are not all Kempe equivalent.

In fact, we prove that for every ε > 0 and for any large enough t, there is a graph G
that does not admit a Kt-minor but admits a (3

2
− ε)t-colouring that is frozen; Any pair

of colours induce a connected component, so that no Kempe change can modify the colour
partition. To obtain Theorem 1.3, we then argue that the graph admits a colouring with
a different colour partition. The notion of frozen k-colouring is related to the notion of
quasi-Kp-minor, introduced in [11]. A graph G admits aKp-minor if it admits p non-empty,
pairwise disjoint and connected bags B1, . . . , Bp ⊂ V (G) such that for any i 6= j, there is an
edge between some vertex in Bi and some vertex in Bj. For the notion of quasi-Kp-minor,
we drop the restriction that each Bi should induce a connected subgraph of G, and replace
it with the condition that for any i 6= j, the set Bi ∪ Bj induces a connected subgraph of
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G. If the graph G admits a frozen p-colouring, then it trivially admits a quasi-Kp-minor3,
while the converse may not be true. If all p-colourings of a graph form a single equivalence
class, then either there is no frozen p-colouring or there is a unique p-colouring of the
graph up to colour permutation. The latter situation in a graph with no Kp-minor would
disprove Hadwiger’s conjecture, so Las Vergnas and Meyniel conjectured that there is no
frozen p-colouring in that case. Namely, they conjectured the following.

Conjecture 1.4 (Conjecture C in [11]). For any t, any graph that admits a quasi-Kt-minor
admits a Kt-minor.

Conjecture 1.4 was proved for increasing values of t, and is now known to hold for
t ≤ 10 [5, 16, 10]. As discussed above, we strongly disprove Conjecture 1.4 for large t. It
is unclear how large t needs to be for a counter-example.

Theorem 1.5. For every ε > 0 and for any large enough t, there is a graph G that admits
a quasi-Kt-minor but does not admit a K( 2

3
+ε)t-minor.

We later became aware a similar construction already appeared in [4].
Trivially, every graph that admits a quasi-K2t-minor admits a Kt-minor. We leave the

following two open questions, noting that 2
3
≥ c ≥ 1

2
and c′ ≥ 3

2
.

Question 1.6. What is the infimum c such that for any large enough t, there is a graph G
that admits a quasi-Kt-minor but no Kct-minor?

Question 1.7. Is there a constant c′ such that for every t, all the c′ · t-colourings of a graph
with no Kt-minor form a single equivalence class?

In the 1980’s, [8, 9] and [17] proved independently that a graph with no Kt-minor has
degeneracy O(t

√
log t), since improved only by a constant factor [18, 23, 6]. Since all the

k-colorings of d-degenerate graphs are equivalent for k > d [11], this gives the best upper
bound known so far for Question 1.7.

2 Construction
Let n ∈ N and let η > 0. We build a random graph Gn on vertex set {a1, . . . , an,
b1, . . . , bn}: for every i 6= j independently, we select one pair uniformly at random among
{(ai, aj), (ai, bj), (bi, aj), (bi, bj)} and add the three other pairs as edges to the graph Gn.

Note that the sets {ai, bi}1≤i≤n form a quasi-Kn-minor, as for every i 6= j, the set
{ai, bi, aj, bj} induces a path on four vertices in Gn, hence is connected.

Our goal is to argue that if n is sufficiently large then with high probability the graph
Gn does not admit anyK( 2

3
+η)n-minor. This will yield Theorem 1.5. To additionally obtain

Theorem 1.3, we need to argue that with high probability, Gn admits an n-colouring with
a different colour partition than the natural one, where the colour classes are of the form
{ai, bi}. Informally, we can observe that each of {a1, . . . , an} and {b1, . . . , bn} induces a

3One bag for each colour class.
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graph behaving like a graph in Gn, 3
4
(i.e. each edge exists with probability 3

4
) though the

two processes are not independent. This argument indicates that χ(Gn) = O( n
logn

), but
we prefer a simpler, more pedestrian approach.

Assume that for some i, j, k, `, none of the edges aibj, ajbk, akb` and a`bi exist. Then
the graph Gn admits an n-colouring α where α(ap) = α(bp) = p for every p 6∈ {i, j, k, `}
and α(ai) = α(bj) = i, α(aj) = α(bk) = j, α(ak) = α(b`) = k and α(a`) = α(bi) = `
(see Figure 1). Since every quadruple (i, j, k, `) has a positive and constant probability of
satisfying this property, Gn contains such a quadruple with overwhelmingly high probability
when n is large.

Figure 1: A different n-colouring given an appropriate quadruple.

We are now ready to prove that the probability that Gn admits a K( 2
3
+η)n-minor tends

to 0 as n grows to infinity. We consider three types of Kp-minors in G, depending on the
size of the bags involved. If every bag is of size 1, we say that it is a simple Kp-minor – in
fact, it is a subgraph. If every bag is of size 2, we say it is a double Kp-minor. If every bag
is of size at least 3, we say it is a triple Kp-minor. We prove three claims, as follows.

Claim 2.1. For any ε > 0, P(Gn contains a simple Kεn-minor)→ 0 as n→∞.

Claim 2.2. For any ε > 0, P(Gn contains a double Kεn-minor)→ 0 as n→∞.

Claim 2.3. Gn does not contain a triple K 2
3
n+1-minor.

Claims 2.1, 2.2 and 2.3 are proved in Sections 2.1, 2.2 and 2.3, respectively. If a graph
admits a Kp-minor, then in particular it admits a simple Ka-minor, a double Kb-minor and
a triple Kc-minor such that a + b + c ≥ p. Combining Claims 2.1, 2.2 and 2.3, we derive
the desired conclusion.



On a recolouring version of Hadwiger’s conjecture 146

2.1 No large simple minor

Proof of Claim 2.1. Let S be a subset of k vertices of Gn. The probability that S induces
a clique in Gn is at most

(
3
4

)(k2). Indeed, if {ai, bi} ⊆ S for some i, then the probability
is 0. Otherwise, |S ∩ {ai, bi}| ≤ 1 for every i, so we have G[S] ∈ Gk, 3

4
, i.e. edges exist

independently with probability 3
4
. Therefore, the probability that S induces a clique is(

3
4

)(k2). By union-bound, the probability that some subset on k vertices induces a clique is

at most
(
2n
k

)
·
(
3
4

)(k2). For any ε > 0, we note that
(
2n
εn

)
≤ 22n. Therefore, the probability

that Gn contains a simple Kεn-minor is at most 22n ·
(
3
4

)(εn2 ), which tends to 0 as n grows
to infinity. y

2.2 No large double minor

Proof of Claim 2.2. Let S ′ be a subset of k pairwise disjoint pairs of vertices in Gn such
that for every i, at most one of {ai, bi} is involved in S ′.

We consider the probability that Gn/S′ induces a clique, where Gn/S′ is defined as
the graph obtained from Gn by considering only vertices involved in some pair of S ′ and
identifying the vertices in each pair.

We consider two distinct pairs (x1, y1), (x2, y2) of S ′. Without loss of generality, {x1, x2,
y1, y2} = {ai, aj, ak, a`} for some i, j, k, `. The probability that there is an edge between
{x1, y1} and {x2, y2} is 1 −

(
1
4

)4. In other words, P(E((x1, y1), (x2, y2)) = ∅) =
(
1
4

)4 and
since at most one of {ai, bi} is involved in S ′ for all i, all such events are mutually inde-

pendent. Therefore, the probability that S ′ yields a quasi-K|S′|-minor is
(
1−

(
1
4

)4)(|S′|
2 ).

For any ε′ > 0, the number of candidates for S ′ is at most
(

2n
2ε′n

)
(the number of choices

for a ground set of 2ε′n vertices) times (2ε′n)! (a rough upper bound on the number of
ways to pair them). Note that

(
2n
2ε′n

)
· (2ε′n)! ≤ (2n)2ε

′n. We derive that the probability

that there is a set S ′ of size ε′n such that Gn/S′ = K|S′| is at most (2n)2ε′n ·
(
1−

(
1
4

)4)(ε′n2 ),
which tends to 0 as n grows large.

Consider a double Kk-minor S of Gn. Note that no pair in S is equal to {ai, bi} (for any
i), as every bag induces a connected subgraph in Gn. We build greedily a maximal subset
S ′ ⊆ S such that S ′ involves at most one vertex out of every set of type {ai, bi}. Note
that |S ′| ≥ |S|

3
. By taking ε′ = ε

3
in the above analysis, we obtain that the probability that

there is a set S of εn pairs that induces a quasi-K|S|-minor tends to 0 as n grows large. y

2.3 No large triple minor

Proof of Claim 2.3. The graph Gn has 2n vertices, and a triple Kk-minor involves at least
3k vertices. It follows that if Gn contains a triple Kk-minor then k ≤ 2n

3
. y
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