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Abstract

We prove that for any € > 0, for any large enough ¢, there is a graph G that admits

no Ky-minor but admits a (% — ¢g)t-colouring that is “frozen” with respect to Kempe
changes, i.e. any two colour classes induce a connected component. This disproves

three conjectures of Las Vergnas and Meyniel from 1981.
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1 Introduction

In an attempt to prove the Four Colour Theorem in 1879, Kempe |[7]| introduced an ele-
mentary operation on the colourings' of a graph that became known as a Kempe change.
Given a k-colouring « of a graph G, a Kempe chain is a maximal bichromatic component?.
A Kempe change in « corresponds to swapping the two colours of a Kempe chain so as to
obtain another k-colouring. Two k-colourings are Kempe equivalent if one can be obtained
from the other through a series of Kempe changes.
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I Throughout this paper, all colourings are proper, i.e. no two vertices with the same colour are adjacent.

2If a vertex of G is coloured 1 and has no neighbour coloured 2 in «, then it forms a Kempe chain of
size 1.
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The study of Kempe changes has a vast history, see e.g. [13] for a comprehensive
overview or [3] for a recent result on general graphs. We refer the curious reader to the rel-
evant chapter of a 2013 survey by Cereceda [19]. Kempe equivalence falls within the wider
setting of combinatorial reconfiguration, which [19] is also an excellent introduction to.
Perhaps surprisingly, Kempe equivalence has direct applications in approximate counting
and applications in statistical physics (see e.g. [15, 14| for nice overviews). Closer to graph
theory, Kempe equivalence can be studied with a goal of obtaining a random colouring by
applying random walks and rapidly mixing Markov chains, see e.g. [20].

Kempe changes were introduced as a mere tool, and are decisive in the proof of Vizing’s
edge colouring theorem [21]. However, the equivalence class they define on the set of k-
colourings is itself highly interesting. In which cases is there a single equivalence class?
In which cases does every equivalence class contain a colouring that uses the minimum
number of colours? Vizing conjectured in 1965 [22] that the second scenario should be true
in every line graph, no matter the choice of k. Despite partial results |1, 2|, this conjecture
remains wildly open.

In the setting of planar graphs, Meyniel proved in 1977 [12] that all 5-colourings form a
unique Kempe equivalence class. The result was then extended to all K5-minor-free graphs
in 1979 by Las Vergnas and Meyniel [11|. They conjectured the following, which can be
seen as a reconfiguration counterpoint to Hadwiger’s conjecture, though it neither implies
it nor is implied by it.

Conjecture 1.1 (Conjecture A in [11]). For every t, all the t-colourings of a graph with
no K;-minor form a single equivalence class.

They also proposed a related conjecture that is weaker assuming Hadwiger’s conjecture

holds.

Conjecture 1.2 (Conjecture A’ in [11]). For every t and every graph with no Ky-minor,
every equivalence class of t-colourings contains some (t — 1)-colouring.

Here, we disprove both Conjectures 1.1 and 1.2, as follows.

Theorem 1.3. For every € > 0 and for any large enough t, there is a graph with no

K;-minor, whose (% — )t-colourings are not all Kempe equivalent.

In fact, we prove that for every ¢ > 0 and for any large enough ¢, there is a graph GG
that does not admit a K;-minor but admits a (% — g)t-colouring that is frozen; Any pair
of colours induce a connected component, so that no Kempe change can modify the colour
partition. To obtain Theorem 1.3, we then argue that the graph admits a colouring with
a different colour partition. The notion of frozen k-colouring is related to the notion of
quasi-K,-minor, introduced in [11]. A graph G admits a K,-minor if it admits p non-empty,
pairwise disjoint and connected bags By, ..., B, C V(G) such that for any i # j, there is an
edge between some vertex in B; and some vertex in B;. For the notion of quasi-K,-minor,
we drop the restriction that each B; should induce a connected subgraph of G, and replace
it with the condition that for any ¢ # j, the set B; U B; induces a connected subgraph of
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G. If the graph G admits a frozen p-colouring, then it trivially admits a quasi-K,-minor®,
while the converse may not be true. If all p-colourings of a graph form a single equivalence
class, then either there is no frozen p-colouring or there is a unique p-colouring of the
graph up to colour permutation. The latter situation in a graph with no K,-minor would
disprove Hadwiger’s conjecture, so Las Vergnas and Meyniel conjectured that there is no
frozen p-colouring in that case. Namely, they conjectured the following.

Conjecture 1.4 (Conjecture Cin [11]). For anyt, any graph that admits a quasi-K;-minor
admits a K;-minor.

Conjecture 1.4 was proved for increasing values of ¢, and is now known to hold for
t <10 [5, 16, 10]. As discussed above, we strongly disprove Conjecture 1.4 for large . It
is unclear how large ¢ needs to be for a counter-example.

Theorem 1.5. For every e > 0 and for any large enough t, there is a graph G that admits
a quasi-Ki-minor but does not admit a K(g+8)t—minor.
3
We later became aware a similar construction already appeared in [4].
Trivially, every graph that admits a quasi- Ky;-minor admits a K;-minor. We leave the
following two open questions, noting that % >c> % and ¢ > %

Question 1.6. What is the infimum c such that for any large enough ¢, there is a graph G
that admits a quasi- K;-minor but no K -minor?

Question 1.7. Is there a constant ¢’ such that for every t, all the ¢’ - t-colourings of a graph
with no K;-minor form a single equivalence class?

In the 1980’s, [8, 9] and [17] proved independently that a graph with no K;,-minor has
degeneracy O(ty/logt), since improved only by a constant factor [18, 23, 6]. Since all the
k-colorings of d-degenerate graphs are equivalent for k > d [11], this gives the best upper
bound known so far for Question 1.7.

2 Construction

Let n € N and let n > 0. We build a random graph G, on vertex set {ai,...,a,,
bi,...,b,}: for every i # j independently, we select one pair uniformly at random among
{(ai,a;), (a;, b), (b, a;), (b, b;)} and add the three other pairs as edges to the graph G,,.
Note that the sets {a;,b;}1<i<n form a quasi-K,-minor, as for every i # j, the set
{ai, b;,a;,b;} induces a path on four vertices in G,,, hence is connected.
Our goal is to argue that if n is sufficiently large then with high probability the graph
G, does not admit any K (2 Jm)n—minor. This will yield Theorem 1.5. To additionally obtain

Theorem 1.3, we need to argue that with high probability, G,, admits an n-colouring with
a different colour partition than the natural one, where the colour classes are of the form
{a;,b;}. Informally, we can observe that each of {ai,...,a,} and {by,...,b,} induces a

30ne bag for each colour class.
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graph behaving like a graph in G, s (i.e. each edge exists with probability 2) though the
two processes are not independent. This argument indicates that x(G,) = O(g;;), but
we prefer a simpler, more pedestrian approach.

Assume that for some ¢, j, k, ¢, none of the edges a;b;, a;by, axb, and asb; exist. Then
the graph G,, admits an n-colouring o where a(a,) = a(b,) = p for every p & {i,j,k,(}
and a(a;) = a(b;) =i, ala;) = a(by) = j, alar) = alb) = k and a(ar) = a(b;) = ¢
(see Figure 1). Since every quadruple (i, j, k, £) has a positive and constant probability of
satisfying this property, G, contains such a quadruple with overwhelmingly high probability
when n is large.

Figure 1: A different n-colouring given an appropriate quadruple.

We are now ready to prove that the probability that G,, admits a K ( -minor tends

2-|-17)n
3

to 0 as n grows to infinity. We consider three types of K,-minors in G, depending on the
size of the bags involved. If every bag is of size 1, we say that it is a simple K,-minor — in
fact, it is a subgraph. If every bag is of size 2, we say it is a double K,-minor. If every bag

is of size at least 3, we say it is a ¢riple K),-minor. We prove three claims, as follows.
Claim 2.1. For any € > 0, P(G,, contains a simple K.,-minor) — 0 as n — oo.
Claim 2.2. For any € > 0, P(G,, contains a double K.,-minor) — 0 as n — oc.
Claim 2.3. G,, does not contain a triple Kz, -minor.

Claims 2.1, 2.2 and 2.3 are proved in Sections 2.1, 2.2 and 2.3, respectively. If a graph
admits a Kp-minor, then in particular it admits a simple K,-minor, a double Kj-minor and
a triple K.minor such that a + b+ ¢ > p. Combining Claims 2.1, 2.2 and 2.3, we derive
the desired conclusion.
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2.1 No large simple minor

Proof of Claim 2.1. Let S be a subset of k vertices of GG,,. The probability that S induces

k
a clique in G, is at most (%)(2) Indeed, if {a;,b;} C S for some 7, then the probability
is 0. Otherwise, |S N {a;,b;}| < 1 for every i, so we have G[S] € i3, Le. edges exist
independently with probability %. Therefore, the probability that S induces a clique is

k
(%) <2) By union-bound, the probability that some subset on k& vertices induces a clique is

k
at most (2:) . (%)(2> For any ¢ > 0, we note that (52) < 22" Therefore, the probability

that G,, contains a simple K_,-minor is at most 22" - (%)<2 ), which tends to 0 as n grows
to infinity. g

2.2 No large double minor

Proof of Claim 2.2. Let S’ be a subset of k pairwise disjoint pairs of vertices in G,, such
that for every 4, at most one of {a;, b;} is involved in S’

We consider the probability that G, /s induces a clique, where G, /s is defined as
the graph obtained from G,, by considering only vertices involved in some pair of S’ and
identifying the vertices in each pair.

We consider two distinct pairs (21, y1), (22, y2) of S’. Without loss of generality, {1, x2,
y1, Y2} = {a;,a;,ax, a;} for some 4, j, k,£. The probability that there is an edge between
{z1,11} and {xq,yp} is 1 — (5)4. In other words, P(E((z1,v1), (72,92)) = 0) = (411)4 and
since at most one of {a;, b;} is involved in S’ for all 7, all such events are mutually inde-

5’1
pendent. Therefore, the probability that S’ yields a quasi-K|s/-minor is (1 — (i)A‘)( 2

For any ¢’ > 0, the number of candidates for S’ is at most (2257’111) (the number of choices

for a ground set of 2¢'n vertices) times (2¢'n)! (a rough upper bound on the number of
ways to pair them). Note that (,7) - (2¢n)! < (2n)*™. We derive that the probability

2e'n
/

that there is a set S’ of size e'n such that G,, /s = K|g/| is at most (2n)%™- (1 — (}1)4>( ’ ),
which tends to 0 as n grows large.

Consider a double Kj-minor S of G,,. Note that no pair in S is equal to {a;, b;} (for any
i), as every bag induces a connected subgraph in G,,. We build greedily a maximal subset
S" C S such that S’ involves at most one vertex out of every set of type {a;,b;}. Note
that |S'| > |_§| By taking ¢’ = £ in the above analysis, we obtain that the probability that

there is a set S of en pairs that induces a quasi-K|g-minor tends to 0 as n grows large. J

2.3 No large triple minor

Proof of Claim 2.5. The graph G,, has 2n vertices, and a triple K-minor involves at least
3k vertices. It follows that if GG,, contains a triple Kji-minor then £ < %” _|
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