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Abstract

The results of Thue state that there exists an infinite sequence over 3 symbols
without 2 identical adjacent blocks, which we call a 2-nonrepetitive sequence, and
also that there exists an infinite sequence over 2 symbols without 3 identical adjacent
blocks, which is a 3-nonrepetitive sequence. An r-repetition is defined as a sequence
of symbols consisting of r identical adjacent blocks, and a sequence is said to be r-
nonrepetitive if none of its subsequences are r-repetitions. Here, we study colorings
of Euclidean spaces related to the work of Thue. A coloring of Rd is said to be r-
nonrepetitive of no sequence of colors derived from a set of collinear points at distance
1 is an r-repetition. In this case, the coloring is said to avoid r-repetitions. It was
proved in [9] that there exists a coloring of the plane that avoids 2-repetitions using
18 colors, and conversely, it was proved in [3] that there exists a coloring of the plane
that avoids 43-repetitions using only 2 colors. We specifically study r-nonrepetitive
colorings for fixed number of colors : for a fixed number of colors k and dimension
d, the aim is to determine the minimum multiplicity of repetition r such that there
exists an r-nonrepetitive coloring of Rd using k colors.

We prove that the plane, R2, admits a 2- and a 3-coloring avoiding 33- and 18-
repetitions, respectively.
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1 Introduction
The Hadwiger-Nelson problem asks for the minimum number of colors required to color
the Euclidean plane such that any two points at distance 1 are colored differently. This
is called the chromatic number of the plane, and is denoted as χ(R2). The answer to this
problem is unknown, but it was proved that 5 ≤ χ(R2) ≤ 7 [1, 2, 7]. We study colorings of
Euclidean spaces that are connected to the Hadwiger-Nelson problem and where the goal
is to avoid specific patterns on straight lines.

An r-repetition is a finite sequence of symbols consisting of r identical blocks, where a
block is a subsequence of consecutive terms. A sequence is r-nonrepetitive if none of its
subsequences of consecutive terms are r-repetitions. For instance, the word hotshots is a 2-
repetition and the word minimize is 2-nonrepetitive. The results of Thue state that there
exists an infinite 2-nonrepetitive sequence over 3 symbols and an infinite 3-nonrepetitive
sequence over 2 symbols. We study the Euclidean variant of Thue sequences introduced
by Grytczuk et al. [5]. A straight path is defined as a sequence of collinear points of Rd,
where consecutive points are at distance 1. A coloring of Rd is r-nonrepetitive if for each
straight path in Rd, the sequence of the colors of its points is r-nonrepetitive. For fixed
integers d and r, the aim is to find the minimum number of colors for which there exists
an r-nonrepetitive coloring of Rd. Let πr(Rd) denote that number.

One easily deduces from Thue’s result that π2(R) = 3 and π3(R) = 2. The problem is
more difficult for higher dimensions. Colorings of Euclidean spaces that avoid 2-repetitions
are called square-free colorings. It was proven in [9] that there exists a square-free coloring
of the plane that uses 18 colors, which means that π2(R2) ≤ 18. The problem of determining
π2(R2) is connected to the Hadwiger-Nelson problem in the following way. If a coloring of
the plane is 2-nonrepetitive, then 2 points at distance 1 must be colored differently, so at
least χ(R2) colors are required. Therefore 5 ≤ χ(R2) ≤ π2(R2) ≤ 18.

Dębski et al. studied r-nonrepetitive colorings for larger values of r [3]. More specifi-
cally, they gave a proof that for any d ∈ N, there exists r = r(d) such that πr(Rd) = 2. In
other words, for large enough values of r, the problem can be solved with the least possible
number of colors. In particular, for d = 2, the minimum value of r for which πr(R2) = 2 is
unknown, but the paper provides a proof that π43(R2) = 2 and π24(R2) ≤ 3. For smaller
values of r, it is known that π6(R2) ≤ 4 and π3(R2) ≤ 9 [4, 9].

We prove that there exists a 33-nonrepetitive coloring of R2 with 2 colors, that is,
π33(R2) = 2. We also prove that π18(R2) ≤ 3. Our improvements rely on two main
ingredients. First, we provide a better bound on the number of pathable sequences of
hypercubes. This quantity already played a crucial role in the proof from [3]. Secondly, the
proof from [3] uses the Lovász Local Lemma, which we replace with a counting method that
yields slightly better bounds in this setting. This argument was first used for nonrepetitive
colorings of graphs [6] and was later presented in the more general context of hypergraph
coloring [8].
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2 Pathable sequences
A standard technique in problems related to colorings of Euclidean spaces is to define a
regular tiling of that space and assign the same color to all the points of each tile. The
proof of the result from [3] uses a partition of Rd into hypercubes of diameter 1. We will
also use this partition. More precisely, each hypercube is a set of the form {(x1, ..., xd) ∈
Rd : ∀j ∈ J1, dK, ij ≤ xj

√
d < ij + 1}, with (i1, ..., id) ∈ Zd. This way, any two points at

distance 1 are always in different hypercubes. Let H denote the set of hypercubes from
this partition.

We call a sequence (α0, ..., α`−1) of hypercubes `-pathable if there exists a straight path
(q0, ..., q`−1) in Rd with qi ∈ αi for each i (See Figure 1). For a fixed cube H, Dd(`) is
defined as the number of `-pathable sequences in Rd containing H (each pair (α0, ..., α`−1)
and (α`−1, ..., α0) is counted as a single sequence).

Figure 1: A 6-pathable sequence in R2.

It is know that Dd(l) = O(l3d) [3]. We improve this upper bound for d = 2.

Lemma 1. The number of `-pathable sequences in R2 is bounded as follows,

D2(`) ≤
2
√
2

3
`5 + (2− 2

√
2

3
)`3 − 2`2 .

3 Calculations with the counting argument
In this section, we provide a condition similar to [3, Lemma 2.3]. It provides a condition
on r and the number of colors k that ensures that there exists an r-nonrepetitive coloring
of Rd using k colors. However, the condition of Lemma 3, can be proven to be weaker, that
is, whenever the condition of [3, Lemma 2.3] holds then our lemma automatically holds
with β = k2−1/(r−1). In practice, this leads to a slightly better bound for our results.

In the proof of Lemma 2, we will consider an arbitrary subset S of Rd consisting of
finitely many hypercubes from the partition. This method directly shows that there exist
exponentially many valid hypercube colorings, with respect to the number of hypercubes
in S.
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Lemma 2. Let r, k and d be integers. For every set S of hypercubes, let C(S) be the set
of r-nonrepetitive hypercube colorings of S with k colors.

If there exists β > 1 such that

k ≥ β +
∞∑
s=1

Dd(rs)× β1−(r−1)s ,

then for every set S of n hypercubes of the partition of Rd and for every hypercube H ∈ S,

|C(S)| ≥ β|C(S −H)| .

Remark that β > 1 and that according to Corollary 2.5 from [3], Dd(rs) = O((rs)3d),
so the sum in this Lemma is always well-defined.

Proof. We proceed by induction on n = |S|. This is true for n = 1 because S − H = ∅.
Fix n ≥ 2 and assume that the result holds for every i < n. Let S be a set of n hypercubes
and H a hypercube of S. Our induction hypothesis implies that for all R ⊆ S −H,

C(S −H −R) ≤ C(S −H)

β|R|
. (1)

Let F be the set of colorings of S that are r-nonrepetitive on S−H but for which there
is an r-repetition on S. Then

|C(S)| = k|C(S −H)| − |F | . (2)

Let s ∈ N∗ and α = (α1, ..., αrs) be a pathable sequence such that H = αi, for some
i ∈ {1, . . . , rs}. We define Fα as the subset of F for which there is an r-repetition of length
rs on that sequence. Without loss of generality, we assume that i ≥ s + 1. We consider
a coloring φ ∈ Fα. By definition of F , the sequence of colors on α is an r-repetition, and
the restriction of φ to S − (αs+1, ..., αrs) is r-nonrepetitive because H ∈ {αs+1, ..., αrs}.
Therefore, φ is uniquely determined by its restriction to S − {αs+1, ..., αrs} and |Fα| ≤
|C(S − {αs+1, ..., αrs}|. By equation (1), this implies,

|Fα| ≤
1

β(r−1)s−1 |C(S −H)| .

Let Frs be the subset of F for which there is an r-repetition of length rs. Recall that
Dd(rs) is the number of pathable sequences of length rs containing H. Then,

|Frs| ≤ Dd(rs)
1

β(r−1)s−1 |C(S −H)| .

Now, by summing over all s, and by using our main hypothesis

|F | =

∣∣∣∣∣
∞⋃
s=1

Frs

∣∣∣∣∣ ≤
∞∑
s=1

|Frs| ≤
∞∑
s=1

Dd(rs)
1

β(r−1)s−1 |C(S −H)| ≤ |C(S −H)|(k − β) .
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Using this bound inside equation (2),

|C(S)| = k|C(S −H)| − |F | ≥ β|C(S −H)|

which concludes our induction.

For each subset S of Rd consisting of n hypercubes, |C(S)| ≥ βn−1k. This means that
any finite arbitrary subset of hypercubes of the partition of Rd can be r-nonrepetitively
colored. By compacity (e.g., see the proof of Lemma 2.3 from [3]) there exists an r-
nonrepetitive coloring of Rd.

Lemma 3. For every integers r, k and d, if there exists β > 1 such that

k ≥ β +
∞∑
s=1

Dd(rs)× β1−(r−1)s

then πr(Rd) ≤ k.

4 Proof of the main results and conclusion
We can now use the bound from Lemma 1 to verify the conditions of Lemma 3 for well-
chosen values of r, β and k. In particular, one can verify that the condition of Lemma 3
holds for r = 33, β = 19/10 and k = 2 which implies the following result.

Theorem 4. There exists a 2-coloring of the plane avoiding 33-repetitions.

Let r(d) denote the least positive integer such that πr(d)(Rd) = 2. We proved that
r(2) ≤ 33, which improves the bound r(2) ≤ 43 proved in [3]. However, this result probably
isn’t optimal, since the best known lower bound is r(2) ≥ 3 which is a consequence of the
results of Thue. This means that r(2) lies between 3 and 33. In fact, it is conjectured in
[3] that r(2) = 4.

Similarly, one can verify that the condition of Lemma 3 holds for r = 18, β = 8/3 and
k = 3 which implies the following result.

Theorem 5. There exists a 3-coloring of the plane avoiding 18-repetitions.

Again the value 18 is an improvement from 24 but is probably still not optimal.

References
[1] P. Brass, W. Moser, and J. Pach. Research Problems in Discrete Geometry. Springer,

New York, 2005.

[2] A. de Grey. The chromatic number of the plane is at least 5. Geombinatorics, 28:18–31,
2018.



Nonrepetitive colorings of Rd 119

[3] M. Dębski, J. Grytczuk, B. Nayar, U. Pastwa, J. Sokół, M. Tuczyński, P. Wenus, and
K. Węsek. Avoiding multiple repetitions in euclidean spaces. SIAM Journal on Discrete
Mathematics, 34(1):40–52, 2020.

[4] M. Dębski, U. Pastwa, and K. Węsek. Grasshopper avoidance of patterns. Electron. J.
Combin., 23:1–16, 2016.

[5] J. Grytczuk, K. Kosiński, and M. Zmarz. Nonrepetitive colorings of line arrangements.
European Journal of Combinatorics, 51:275–279, 2016.

[6] M. Rosenfeld. Another approach to non-repetitive colorings of graphs of bounded
degree. Electronic Journal of Combinatorics, 27(3), 2020.

[7] A. Soifer. The Mathematical Coloring Book: Mathematics of Coloring and the Colorful
Life of Its Creators. Springer, New York, 2008.

[8] I. M. Wanless and D. R. Wood. A general framework for hypergraph coloring. SIAM
Journal on Discrete Mathematics, 36(3):1663–1677, 2022.

[9] P. Wenus and K.Węsek. Nonrepetitive and pattern-free colorings of the plane. European
Journal of Combinatorics, 54:21–34, 2016.


	Introduction
	Pathable sequences
	Calculations with the counting argument
	Proof of the main results and conclusion

