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Isoperimetric stability in lattices

(Extended abstract)
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Abstract

We obtain isoperimetric stability theorems for general Cayley digraphs on Zd. For
any fixed B that generates Zd over Z, we characterise the approximate structure of
large sets A that are approximately isoperimetric in the Cayley digraph of B: we show
that A must be close to a set of the form kZ ∩ Zd, where for the vertex boundary
Z is the conical hull of B, and for the edge boundary Z is the zonotope generated by B.
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1 Introduction
An important theme at the interface of Geometry, Analysis and Combinatorics is un-
derstanding the structure of approximate minimisers to isoperimetric problems. These
problems take the form of minimising surface area of sets with a fixed volume, for various
meanings of ‘area’ and ‘volume’. The usual meanings give the Euclidean Isoperimetric
Problem considered since the ancient Greek mathematicians, where balls are the mea-
surable subsets of Rd with a given volume which minimize the surface area. There is a
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large literature on its stability, i.e. understanding the structure of approximate minimis-
ers, culminating in the sharp quantitative isoperimetric inequality of Fusco, Maggi and
Pratelli [8].

In the discrete setting, isoperimetric problems form a broad area that is widely studied
within Combinatorics (see the surveys [2, 14]) and as part of the Concentration of Measure
phenomenon (see [15, 26]). Certain particular settings have been intensively studied due to
their applications; for example, there has been considerable recent progress (see [12, 11, 13,
23]) on isoperimetric stability in the discrete cube {0, 1}n, which is intimately connected
to the Analysis of Boolean Functions (see [20]) and the Kahn–Kalai Conjecture (see [10])
on thresholds for monotone properties, which has recently been solved [7, 21]. This paper
concerns the setting of integer lattices, which is widely studied in Additive Combinatorics,
where the Polynomial Freiman–Ruzsa Conjecture (see [9]) predicts the structure of sets
with small doubling.

For an isoperimetric problem on a digraph (directed graph) G, we measure the ‘volume’
of A ⊆ V (G) by its size |A|, and its ‘surface area’ either by the edge boundary ∂e,G(A),
which is the number of edges −→xy ∈ E(G) with x ∈ A and y ∈ V (G) \ A, or by the vertex
boundary ∂v,G(A), which is the number of vertices y ∈ V (G) \ A such that −→xy ∈ E(G) for
some x ∈ A. Here we consider Cayley digraphs: given a generating set B of Zd, we write
GB for the digraph on Zd with edges E(GB) = {−→uv : v − u ∈ B}.

It is an open problem to determine the minimum possible value of ∂v,GB
(A) or ∂e,GB

(A)
for A ⊆ Zd of given size, let alone any structural properties of (approximate) minimisers;
exact results are only known for a few instances of B (see [3, 4, 27, 24]). It is therefore
natural to seek asymptotics. For ease of reference we collect here our notation for the
various sets involved in stating the following results.

C(B) ⊆ Rd The conical hull C(B) of B is the convex hull of B ∪ {0}.

Bn ⊆ Zd The sets kC(B) ∩ Zd are increasing as a function of k > 0. Write Bn for the
smallest of these sets with at least n elements.

[B] ⊆ Zd Write [B] =
{∑

b∈B′ b : B′ ⊆ B
}
for the set of all sums of subsets of B. Thus

|[B]| ≤ 2|B|, where the bound is strict if multiple subsets of B have equal
sums.

Z(B) ⊆ Rd The zonotope generated by B is
{∑

b∈B xbb : x ∈ [0, 1]B
}
. Equivalently, Z(B)

is the convex (or conical, as [B] contains 0) hull of [B].

For A ⊆ Zd of size n → ∞, Ruzsa [25] showed that the minimum value of the vertex
boundary ∂v,GB

(A) is asymptotic to that achieved by a set of the form kC(B) ∩ Zd. A
corresponding result for the edge boundary was obtained in [1]: the minimum value of
∂e,GB

(A) is asymptotic to that achieved by a set of the form kZ(B) ∩ Zd.
We will prove stability versions of both these results, describing the approximate struc-

ture of asymptotic minimisers for both the vertex and edge isoperimetric problems in GB.
We use µ to denote Lebesgue measure.
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Theorem 1.1. Let d ≥ 2. For every generating set B of Zd, there is a K ∈ N such that
whenever

• A ⊆ Zd with |A| = n ≥ K,

• Kn−1/2d < ε < K−1 and

• ∂v,GB
(A) ≤ dµ(C(B))1/dn1−1/d(1 + ε),

there is a v ∈ Zd with |A4 (v +Bn)| < Kn
√
ε.

Theorem 1.2. Let d ≥ 2. For every generating set B of Zd and δ > 0, there are K ∈ N
and ε > 0 such that whenever

• A ⊆ Zd with |A| = n ≥ K and

• ∂e,GB
(A) ≤ dµ(Z(B))1/dn1−1/d(1 + ε),

there is a v ∈ Zd with |A4 (v + [B]n)| < δn.

The square root dependence in Theorem 1.1 is tight, as may be seen from an example
where B consists of the corners of a cube and A is an appropriate cuboid.

Besides drawing on the methods of [25] (particularly Plünnecke’s inequality for sumsets)
and [1] (a probabilistic reduction to [25]), the most significant new contribution of our paper
is a technique for transforming discrete problems to a continuous setting where one can
apply results from Geometric Measure Theory. We will employ the sharp estimate on
asymmetric index in terms of anisotropic perimeter with respect to any convex set K due
to Figalli, Maggi and Pratelli [6] (building on the case when K is a ball, established in [8]).

2 Proof strategy
This section contains an overview of the proof of our tight quantitative stability result for
the vertex isoperimetric inequality in general Cayley digraphs. Using ideas from [1] one
can deduce from this also a stability result for the edge isoperimetric inequality.

We start with a summary of Ruzsa’s approach in [25], during which we record some
key lemmas on sumsets and fundamental domains of lattices that we will also use in our
proof.

2.1 Ruzsa’s approach

The sumset of A,B ∈ Zd is defined by A + B := {a + b : a ∈ A, b ∈ B}. The vertex
isoperimetric problem in the Cayley digraph GB is equivalent to finding the minimum of
|A+B| over all sets A of given size. The following result of Ruzsa [25, Theorem 2] implies
an asymptotic for this minimum.

Theorem 2.1. Let B be a generating set of Zd with d ≥ 2. Then for any A ⊆ Zd with
|A| = n large we have |A+B| ≥ dµ(C(B))1/dn1−1/d(1−O(n−1/2d)

)
.
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Ruzsa aims to deduce this inequality from the Brunn–Minkowski inequality (in the form
due to Lusternik [16]) µ(U + V )1/d ≥ µ(U)1/d + µ(V )1/d, which is tight when U and V are
closed, convex and homothetic (that is, agree up to scaling and translation).

Passing from a discrete inequality to a continuous one can be achieved by adding a
fundamental set Q to each side; that is, a measurable Q such that any x ∈ Rd has a unique
representation as x = z + q with z ∈ Zd and q ∈ Q. This ensures that µ(X +Q) = |X| for
any X ⊆ Zd. One example of a fundamental set is the half-open unit cube [0, 1)d, but we
will prefer a fundamental set tailored to B rather than to the standard coordinate axes.

Typically B + Q will be far from convex, so a naive application of Brunn–Minkowski
gives poor results. Ruzsa smooths out B by using a version of Plünnecke’s inequality [22]
to replace B by its sumset. We write Σk(A) for the k-fold sumset of A rather than the
commonly used kA, which in this paper denotes the dilate of A by factor k.

Theorem 2.2 (see [25, Statement 6.2]). Let k ∈ N and A,B ⊆ Zd with |A| = n and
|A+B| = αn. Then there is a non-empty subset A′ ⊆ A with |A′ + Σk(B)| ≤ αk|A′|.

To return to a bound on to discrete sets Ruzsa uses the following lemma. By nice we
mean that a set is a finite union of bounded convex polytopes.

Lemma 2.3 ([25, Lemma 11.2]). Let B be a generating set of Zd with d ≥ 2 and 0 ∈
B. Then there are p ∈ N, z ∈ Zd and a nice fundamental set Q ⊆ Z(B) such that
kC(B) +Q+ z ⊆ Σk+p(B) +Q for any k ∈ N.

The fact that Q may be chosen to be nice and such that Q ⊆ Z(B) is not stated in [25],
but it can be read out of the proof. With a little care Q can be taken to be a parallelepiped,
but we make no use of this observation.

Chaining together the inequalities in this section and optimising over k proves Theo-
rem 2.1. A similar process, taking notice of the stability of our application of the Brunn–
Minkowski inequality, will prove Theorem 1.1.

2.2 Some Geometric Measure Theory

The next element of our proof incorporates a recent quantitative isoperimetric stability
result of Figalli, Maggi and Pratelli [6]. We adopt simplified definitions that suffice for sets
that are nice, as defined in the previous subsection; see [17, 18] for the general setting of
sets of finite perimeter.

For a closed convex polytope K ⊆ Rd and a union E of disjoint (possibly non-convex)
closed polytopes, the perimeter of E with respect to K is given by

PerK(E) = lim
ε→0+

µ(E + εK)− µ(E)

ε
. (1)

In our setting, given a nice set A, for all r ≥ 0 the measure of A + rK and its closure
A+ rK are the same; that is µ(A+ rK) = µ(A+ rK). Thus for all r ≥ 0, (1) gives

PerK(A+ rK) = lim
ε→0+

µ(A+ (r + ε)K)− µ(A+ rK)

ε
. (2)
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The anisotropic isoperimetric problem was posed in 1901 by Wulff [28], who con-
jectured that minimisers of PerK up to null sets are homothetic copies of K, giving
PerK(E) ≥ dµ(K)1/dµ(E)1−1/d. This was established for sets E with continuous boundary
by Dinghas [5] and for general sets E of finite perimeter by Gromov [19]. It is equivalent
to non-negativity of the isoperimetric deficit δK(E) of E with respect to K, defined by

δK(E) :=
PerK(E)

dµ(K)1/dµ(E)1−1/d
− 1.

We quantify the structural similarity between K and E via the asymmetric index (also
known as Fraenkel asymmetry) of E with respect to K, which is given by

AK(E) = inf

{
µ(E 4 (x0 + rK))

µ(E)
: x0 ∈ Rd and rdµ(K) = µ(E)

}
.

Theorem 2.4 ([6, Theorem 1.1]). For any d ∈ N there exists D = D(d) such that for any
bounded convex open set K ⊆ Rd and E ⊆ Rd of finite perimeter we have

AK(E) ≤ D
√
δK(E).

2.3 Stability

Given these ingredients, let us indicate briefly how Theorem 1.1 follows.
Given a set A which is close to optimal in terms of Theorem 1.2, using Ruzsa’s inter-

pretation of the problem in terms of sumsets, we can apply Lemma 2.2 to find a subset
A′ ⊆ A which is close to optimal in the lattice generated by Σk+p(B). In particular, this
leads to a lower bound on the size of A′ in terms of |A′ + Σk+p(B)|. By taking a contin-
uous approximation of this sumset and applying the Brunn-Minkowski inequality we can
conclude that |A′| is approximately |A|, and so it suffices to show that A′ is structurally
close to to an appropriate Bn.

Using Lemma 2.3 we can approximate Σk+p(B) by a homothetic copy of C(B), after
thickening by an appropraite fundamental set, and hence relate the boundary in this new
lattice to the isoperimetric deficit of A′ with respect to C(B). In particular, by Theorem
2.4 we can use this to bound the asymmetric index of A′ with respect to C(B), and hence
by another discrete approximation, to bound the symmetric difference between A′ and
some Bn.
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