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Abstract

A set system F is t-intersecting, if the size of the intersection of every pair of its
elements has size at least t. A set system F is k-Sperner, if it does not contain a
chain of length k + 1.

Our main result is the following: Suppose that k and t are fixed positive in-
tegers, where n + t is even and n is large enough. If F ⊆ 2[n] is a t-intersecting
k-Sperner family, then F has size at most the size of the sum of k layers, of sizes
(n+ t)/2, . . . , (n+ t)/2 + k − 1. This bound is best possible. The case when n+ t is
odd remains open.
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1 Introduction

1.1 Definitions and Notation

For a positive integer n, we write [n] := {1, 2, . . . , n} and 2[n] for the power set of [n]. For
a set S, we denote by

(
S
i

)
the family of all i element subsets of S.
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For a family of sets F ⊆ 2[n], we define Fi := {F ∈ F : |F | = i} and fi := |Fi|. We
use ∆i and ∇i to denote the i-shadow and i-shade of F , respectively, so that ∆iF := {A :
|A| = i, A ⊂ F for some F ∈ F} and ∇iF := {A : |A| = i, A ⊃ F for some F ∈ F}. If
the subscript i is unspecified, then assuming F is r-uniform, ∆F = ∆r−1F and similarly
∇F = ∇r+1F .

Definition 1.1. [k-Sperner family]
A (k + 1)-chain is a collection of k + 1 sets A0, A1, . . . , Ak such that A0 ⊂ A1 ⊂ . . . ⊂ Ak.
A family of sets F ⊆ 2[n] is a k-Sperner family if there is no (k + 1)-chain in F . If k = 1,
then F is simply called a Sperner family or an antichain.

Definition 1.2. [t-intersecting family]
A family of sets F ⊆ 2[n] is t-intersecting if for every pair of sets A,B ∈ F , we have
|A ∩B| ≥ t. If t = 1, then we write that F is intersecting.

1.2 History

The maximum size of an antichain in 2[n] was determined by Sperner [9].

Theorem 1.3 (Sperner). Let F ⊆ 2[n] be an antichain. Then,

|F| ≤
(
n

bn
2
c

)
.

Furthermore, equality holds only if F is one of the largest layers in the Boolean lattice 2[n].

Sperner’s theorem was extended to k-Sperner families by Erdős [2].

Theorem 1.4 (Erdős). The maximum-size k-Sperner family F ⊆ 2[n] is the union of the
largest k layers in the Boolean lattice 2[n].

A different extension of Sperner’s theorem was given by Milner [8]. Milner additionally
required the family F to be t-intersecting.

Theorem 1.5 (Milner). If F ⊆ 2[n] is a t-intersecting antichain, then

|F| ≤
(

n

bn+t+1
2
c

)
.

In a different direction, Frankl [3] determined the maximum size of an intersecting k-
Sperner family. Different proofs were given by Gerbner [5] and by Gerbner, Methuku and
Tompkins [6].

Theorem 1.6 (Frankl). Let F ⊆ 2[n] be an intersecting, k-Sperner family. Then,

|F| ≤


∑n+1

2
+k−1

i=n+1
2

(
n
i

)
, if n is odd,(

n−1
n
2
−1

)
+
∑n

2
+k−1

i=n
2
+1

(
n
i

)
+
(
n−1
n
2
+k

)
, if n is even.
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Furthermore, if n is odd, equality holds only if

F =

(
[n]

bn
2
c+ 1

)
∪
(

[n]

bn
2
c+ 2

)
∪ . . . ∪

(
[n]

bn
2
c+ k

)
,

while if n is even and k > 1, equality holds only if for some x ∈ [n],

F =

{
F ∈

(
[n]
n
2

)
: x ∈ F

}
∪
(

[n]
n
2

+ 1

)
∪ . . . ∪

(
[n]

n
2

+ k − 1

)
∪
{
F ∈

(
[n]

n
2

+ k

)
: x /∈ F

}
.

A common generalization of the theorems of Milner and Frankl would be to determine
the maximum size of a t-intersecting, k-Sperner family.

Frankl [4] proposed conjectures on the maximum size of a t-intersecting k-Sperner family
F ⊂ 2[n] and made some progress towards proving these conjectures. The conjectured
extremal family depends on the parity of n+ t.

In the case when n + t is even, the conjectured maximum size of a t-intersecting, k-
Sperner family is very easy to describe.

Conjecture 1.7 (Frankl). If n+t is even, n > t, and F ⊆ 2[n] is a t-intersecting, k-Sperner
family, then

|F| ≤
k−1∑
i=0

(
n

n+t
2

+ i

)
.

Conjecture 1.7 is clearly tight if true, as evidenced by the family
⋃k−1
i=0

( [n]
n+t
2

+i

)
.

The conjectured extremal families do not have such a simple structure when n + t is
odd. We construct two plausible candidates for the maximum size t-intersecting, k-Sperner
family:

A(t, k) =

{
F ∈

(
[n]

n+t−1
2

)
: n /∈ F

}
∪
{
A :

n+ t− 1

2
+ 1 ≤ |A| ≤ n+ t− 1

2
+ (k − 1)

}
.

B(t, k) =

{
F ∈

(
[n]

n+t−1
2

)
: [1, t] ∈ F

}
∪
{
A :

n+ t− 1

2
+ 1 ≤ |A| ≤ n+ t− 1

2
+ (k − 1)

}

∪
({

B : |B| = n+ t− 1

2
+ k

}
\
{
B : |B| = n+ t− 1

2
+ k, [1, t] ∈ B

})
.

It is not hard to show that |B(t, k)| � |A(t, k)| for n sufficiently large (in terms of k
and t). However, it may be checked by computer that A(t, k) is optimal for small values of
n and specific choices of t and k, for example t = 2 and k = 2. We conjecture that B(t, k)
is the largest such family when n is sufficiently large.
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Conjecture 1.8. There exists a positive integer n0 = n0(k, t) such that if n + t is odd,
n > n0, and F ⊆ 2[n] is a t-intersecting, k-Sperner family, then

|F| ≤ |B(t, k)| =
(
n− t
n−t−1

2

)
+

k∑
i=1

(
n

n+t−1
2

+ i

)
−
(

n− t
n−t−1

2
+ k

)
.

Frankl [4] more modestly conjectures the following (Frankl’s conjecture is formulated
for s-union families rather than t-intersecting families, but our formulation is equivalent to
Frankl’s after taking complements).

Conjecture 1.9 (Frankl). Let g(n, t, k) := max{|G| − |∆n−t+1
2
−k(G)| : G ⊂

( [n]
n−t+1

2

)
is

intersecting}. Then, if n+ t is odd and F is a t-intersecting, k-Sperner family, then

|F| ≤ g(n, t, k) +
k∑
i=1

(
n

n+t−1
2

+ i

)
.

Note that Conjecture 1.8 can be interpreted as a strengthening of Conjecture 1.9, in
that additionally there is a conjecture for the value of the function g(n, t, k) for suffi-
ciently large n. The connection may be made more apparent by noting that, after taking
complements, we may equivalently define g(n, t, k) := max{|G| − |∇n+t−1

2
+k(G)| : G ⊂( [n]

n+t−1
2

)
is t-intersecting}.

1.3 New Results

Let us mention that Frankl proved Conjecture 1.7 when t ≥ n − O(
√
n). We settle Con-

jecture 1.7 if t is fixed and n is sufficiently large.

Theorem 1.10. Let t and k be positive integers, and suppose that n+ t is even with t ≤ n,
and n is large enough. If F ⊆ 2[n] is a t-intersecting k-Sperner family, then

|F| ≤
(

[n]
n+t
2

)
+ . . .+

(
[n]

n+t
2

+ k − 1

)
.

2 Sketch of the Proof of Theorem 1.10
The proof of Theorem 1.10 consists of three parts. The first part is a so-called "push-to-
the-middle" argument. By proving this part, one obtains that there exists a maximum size
t-intersecting k-Sperner family that contains sets only of cardinality between n+t

2
− (k− 1)

and n+t
2

+ 2(k− 1). This is achieved in two steps, none of which uses the assumption n+ t
even, so this part of the proof can be applied in arguments for the n + t odd case. The
two steps are formulated in the following two lemmas, the first of which applies Katona’s
shadow t-intersection theorem [7].
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Lemma 2.1. Let F ⊆ 2[n] be a t-intersecting and k-Sperner family, where n + t is even.
Then there exists a t-intersecting k-Sperner family G ⊆ 2[n] with |G| ≥ |F| and min{|G| :
G ∈ G} ≥ n+t

2
− (k − 1).

Lemma 2.2. If F ⊆ 2[n] is a t-intersecting k-Sperner family with min{|F | : F ∈ F} =
n+t
2
− c, then there exists a t-intersecting k-Sperner family F ′ ⊆ 2[n] with |F| ≤ |F ′|, and

min{|F | : F ∈ F} = min{|F ′| : F ′ ∈ F ′} and max{|F ′| : F ′ ∈ F ′} ≤ n+ t

2
+ c+ k − 1.

The other two parts of the proof applies Katona’s cycle method. We need some defi-
nitions. Let σ be a cyclic permutation of [n] and Fσ be the subfamily of those sets in F
that form an interval in σ. Note that there are (n − 1)! choices for σ. For a set G, let
w(G) =

(
n
|G|

)
and w(G) =

∑
G∈G w(G). We define m as m := n+t

2
−min{|F | : F ∈ F ′′}. By

the above discussions, we have 0 ≤ m ≤ k−1. If m = 0 then F has the required structure,
hence we assume m > 0. The second and most delicate part of the proof is the following
lemma that determines the maximum weight of a t-intersecting k-Sperner family on the
cycle.

Lemma 2.3. Suppose n + t is even with t ≤ n and n is large enough. For every cyclic
permutation σ and t-intersecting k-Sperner family F ⊆

⋃n+t
2

+k−1+m
i=n+t

2
−m

(
[n]
i

)
, we have w(Fσ) ≤

n
∑k−1

i=0

(
n

n+t
2

+i

)
.

Before giving more insight on the proof of Lemma 2.3, let us show how Lemma 2.3
implies Theorem 1.10 that is the part of the proof.

Proof of Theorem 1.10 using Lemma 2.3. As mentioned in the last paragraph of the previ-
ous subsection, by Theorem 2.1 and Lemma 2.2, we can assume that F ⊆

⋃n+t
2

+k−1+m
i=n+t

2
−m

(
[n]
i

)
holds. Then using Lemma 2.3 we have:

∑
σ

∑
F∈Fσ

w(F ) ≤ (n− 1)! · n
k−1∑
i=0

(
n

n+t
2

+ i

)
= n! ·

k−1∑
i=0

(
n

n+t
2

+ i

)
.

From the other side,∑
σ

∑
F∈Fσ

w(F ) =
∑
F∈F

|F |!(n− |F |)!
(
n

|F |

)
= n!|F|,

which implies the required upper bound on |F|.

Let us return to the proof of Lemma 2.3. The extremal family of the lemma consists
of all kn intervals with size between n+t

2
and n+t

2
+ k − 1. Also, any k-Sperner family

on the cycle may contain at most kn intervals, but those that have cardinality smaller
than n+t

2
have larger weight than the intervals of the extremal family. To compensate for
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these, we need to show that if such intervals exist in a t-intersecting K-Sperner family G,
then G must contain intervals that are too large, larger than n+t

2
+ k − 1 and therefore

have smaller weight than all intervals of the extremal family. (And we have to make sure
that the loss of weight is more than the gain.) This is done based on the following simple
observation. For a cyclic permutation σ and an interval G define Gt as the complement
of G together with the (counterclockwise) leftmost b t

2
c and rightmost d t

2
e elements of G

with respect to σ. For a family G of intervals, let Gt = {Gt
: G ∈ G}. Observe that

|G∩Gt| = t and the two endpoints of Gt belong to G∩Gt. Therefore, if G is t-intersecting,
then for any G ∈ G no proper subinterval H of Gt belongs to G. |G| = n+t

2
− c implies

|Gt| = n− (n+t
2
− c) + t = n+t

2
+ c, so if such a G belongs to G, then many intervals of size

close n+t
2

cannot belong to G.
The details how this is used to derive Lemma 2.3 can be found in [1].
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