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Abstract

In 1959 Erdős and Gallai proved the asymptotically optimal bound for the maxi-
mum number of edges in graphs not containing a path of a fixed length. We investigate
a rainbow version of the theorem, in which one considers k ≥ 1 graphs on a common
set of vertices not creating a path having edges from different graphs and asks for
the maximum number of edges in each graph. We prove the asymptotically optimal
bound in the case of a path on three edges and any k ≥ 1.
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1 Introduction
A classical problem in graph theory is to determine the Turán number of a graph F , i.e.,
the maximum possible number of edges in graphs not containing a particular forbidden
structure F as a subgraph. The notable results are exact solutions for a triangle by
Mantel [16] and for a complete graph by Turán [17], and an asymptotically optimal bound
for any non-bipartite graph by Erdős and Stone [6]. Not much is known for bipartite
graphs, but the case of a path was solved asymptotically by Erdős and Gallai [5] in 1951,
while in 1975 Faudree and Schelp [7] provided an exact solution.
∗This work was supported by the National Science Centre grant 2021/42/E/ST1/00193.
†Faculty of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków,

Poland. E-mail: Sebastian.Babinski@alumni.uj.edu.pl.
‡Faculty of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków,

Poland. E-mail: Andrzej.Grzesik@uj.edu.pl.

82



Graphs without a rainbow path of length 3 83

There are many possible ways to define a rainbow version of the problem. In our work
we concentrate on a rainbow version without any additional assumptions and when the
number of edges in each color is maximized. Formally, for a graph F and a positive integer k
we consider k graphs G1, G2, . . . , Gk on the same set of vertices and ask for the maximum
possible number of edges in each graph avoiding appearance of a copy of F having at most
one edge from each graph. In other words, for every i we color edges of Gi in color i (in
particular it means that two vertices can be connected by edges in many colors) and forbid
all copies of F having non-repeated colors, so-called rainbow copies.

When the forbidden rainbow graph F is a triangle, it follows from a result of Keevash,
Saks, Sudakov and Verstraëte [13] that for k ≥ 4 colors the best possible number of
edges in each color without having a rainbow triangle is equal to 1

4
n2. This is achieved

in the balanced complete bipartite graph (the same in each color) as in Mantel’s theorem.
Surprisingly, Magnant [15] provided a construction showing that for 3 colors the answer
is different. Later, Aharoni, DeVos, de la Maza, Montejano and Šámal [1], answering a
question of Diwan and Mubayi [4], proved that in this case the asymptotically optimal
bound is

(
26−2

√
7

81

)
n2 ≈ 0.2557n2. They also asked for similar theorems for bigger cliques,

other graphs and different color patterns (in this setting some results were proven in [3]
and [14]). Recently, Falgas-Ravry, Markström and Räty [8] completely determined the
triples of the asymptotic number of edges in each color that force an existence of a rainbow
triangle. Similar problems, but where one maximizes other functions of the number of
edges (instead of the number of edges in each color), were considered e.g. in [2, 9, 11, 12].

2 The main result
In our work we consider an arbitrary fixed number of colors k ≥ 1 and we aim to maximize
the number of edges in each color avoiding a rainbow path of length 3. The bound obtained
is asymptotically tight.

Theorem 1. For every ε > 0 there exists n0 ∈ N such that for every n ≥ n0, k ≥ 1 and
graphs G1, G2, . . . , Gk on a common set of n vertices, each graph having at least (f(k)+ε)n

2

2

edges, where

f(k) =

{
dk
2
e−2 for k ≤ 6,
1

2k−1 for k ≥ 7,

there exists a rainbow path with 3 edges. Moreover, the above bound on the number of edges
is asymptotically optimal for each k ≥ 1.

We note that in [12] the same forbidden structure is considered, i.e., a rainbow path of
length 3, however when one aims to maximize the product of the number of edges in each
color and there are only 3 or 4 colors. While the result for 4 colors provided there implies
our result for 4 colors, the results for 3 colors are independent of each other.

In order to avoid struggling with the lower-order error terms and to obtain a structure
easier to handle, we rewrite Theorem 1 to a bit different setting. Assuming that Theorem 1
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does not hold we obtain an arbitrarily large counterexample with at least (f(k) + ε)n
2

2

edges in each color and without a rainbow path with 3 edges. Using colored graph removal
lemma [10] we remove all rainbow walks with 3 edges by deleting at most 1

4
εn2 edges in

each color. Then, we add all possible edges without creating rainbow walks with 3 edges.
Finally, we group all the vertices into clusters based on the colors on the incident edges.
Note that if there is an edge between two clusters (or inside one), then all the vertices
between these clusters (or inside this cluster) can be connected by edges in the same color
without creating a rainbow walk of length 3. Thus between clusters (and inside them)
in each color we have all possible edges or none. Additionally, notice that vertices in a
cluster incident to only one or two colors can be all connected by edges in those colors,
while vertices incident to more than 2 colors need to form an independent set. Therefore,
Theorem 1 can be stated in an equivalent form for such kind of clustered graphs.

Definition 2. For any integer k ≥ 1 a clustered graph for k colors is an edge-colored
weighted graph on

(
k
2

)
+ k + 1 vertices with vertex weights bij = bji for 1 ≤ i < j ≤ k, ai

for i ∈ [k] and x, in which

• x ≥ 0, ai ≥ 0 for i ∈ [k] and bij ≥ 0 for every 1 ≤ i < j ≤ k,

•
∑

1≤i<j≤k

bij +
∑
1≤i≤k

ai + x = 1,

• for every i ∈ [k] the vertex of weight ai is connected in color i with itself, the vertex
of weight x and all the vertices of weights bip for p 6= i,

• for every 1 ≤ i < j ≤ k each vertex of weight bij is connected in colors i and j with
itself,

• there are no other edges.

The vertex of weight bij represents the cluster of bijn vertices incident to edges colored
i and j, the vertex of weight ai – the cluster of ain vertices incident only to edges colored i,
and x represents the remaining vertices. Clusters for bij and ai are cliques in appropriate
colors, while cluster for x is an independent set. This is depicted for k = 3 in Figure 1.

b12 b13 b23

a1 a2 a3

x

Figure 1: Representation of clusters for k = 3.
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From the definition of a clustered graph it follows that the density of edges in color
i ∈ [k] in a clustered graph G is the number di(G) ∈ [0, 1] equal to

di(G) = a2i +

 ∑
j∈[k]\{i}

b2ij

+

2
∑

j∈[k]\{i}

aibij

+ 2aix.

The equivalent version of Theorem 1 for clustered graphs is the following.

Theorem 3. For every integer k ≥ 1, if G is a clustered graph for k colors, then

min
i∈[k]

di(G) ≤ f(k), where f(k) =

{
dk
2
e−2 for k ≤ 6,
1

2k−1 for k ≥ 7.

Theorem 1 follows from Theorem 3, because a possible counterexample leads to a
graph with density of edges in each color at least (f(k) + 1

2
ε)n

2

2
and clusters of vertices

behaving as weighted vertices of a related clustered graph. Dividing each cluster size by n
we obtain a clustered graph with density of edges in each color at least f(k) + 1

2
ε, which

contradicts Theorem 3. Note that also Theorem 1 implies Theorem 3 as any clustered
graph G contradicting Theorem 3 having di(G) ≥ f(k)+2ε for each i ∈ [k] and some ε > 0
leads for any appropriately large n to a graph on n vertices with at last (f(k)+ ε)n

2

2
edges

in each color and no rainbow path with 3 edges, which contradicts Theorem 1.
The bound provided in Theorem 3 is tight for every integer k ≥ 1, because it is possible

to construct a clustered graph for k colors G such that mini∈[k] di(G) = f(k):
— for k = 1 let a1 = 1;
— for k = 2 let b12 = 1;
— for k = 3 let b12 = b13 =

1
2
;

— for k = 4 let b12 = b34 =
1
2
;

— for k = 5 let b12 = b34 = b15 =
1
3
;

— for k = 6 let b12 = b34 = b56 =
1
3
;

— for k = 5 or k ≥ 7 let ai = 1
2k−1 for each i ∈ [k], x = k−1

2k−1 .
In each case the remaining weights are equal to 0.

For k = 5 there are two different types of constructions. They are depicted in Figure 2.

1/3 1/3 1/3

4/9

1/9

1/9
1/9

1/9

1/9

Figure 2: Two possible types of extremal constructions for k = 5.
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3 Outline of the proof
Theorem 3 is proven by induction. The theorem is trivial for k ∈ {1, 2} as then f(k) = 1.
Let us fix the smallest k ≥ 3 for which the theorem does not hold. Take a clustered graph
for k colors G maximizing the value of mini∈[k] di(G) and, among such, maximizing the
density of edges in any color. The assumption that Theorem 3 does not hold implies that
di(G) > f(k) for every i ∈ [k]. This and the maximality of G enable to show claims on the
weights of the vertices of G, which will lead to a contradiction for each value of k ≥ 3.

To find many useful bounds on the weights, we introduce an operation of removing
and adding weights in a clustered graph for k colors. Intuitively, we remove tiny weights
from some of the vertices of positive weight and add them to different vertices. From the
maximality of G, such operation cannot enlarge the density of edges in each color, so the
density of edges in at least one color needs to drop down (or the densities of edges in every
color remain the same). Due to different extremal constructions, we need to consider three
main cases: k ∈ {3, 4}, k ∈ {5, 6} and k ≥ 7. Let us denote di = di(G), bi =

∑
j∈[k],j 6=i bij,

and ci = ai + bi + x.
In the case of k = 3 our conjectured clustered graph G satisfies mini∈[3] di >

1
4
, which

implies a simple lower bound on ci. We prove that for some i ∈ [3] we have ai = 0 (without
loss of generality a3 = 0). By contradiction, if every ai > 0, we can remove appropriate
weight from each vertex of weight ai and add the removed weights to all vertices. It implies,
using the maximality of G, a better lower bound for some ci, say c3. Now we consider two
cases: x 6= 0 and x = 0. In the former one we find a lower bound on

∑
i∈[3] ai by removing

suitable weight from the vertex of weight x and adding weights to each vertex of weight
ai. Together with bounds on ci, i ∈ [3] it gives a contradiction. While in the latter case,
we show first that b12 > 0 and removing appropriate weight from the vertex of weight b12
and adding weights to each vertex of the graph leads to a contradiction. Once we know
that a3 = 0, using the technique of removing and adding weights, we show that x = 0 and
that d3 ≤ min{d1, d2}. Then by removing suitable weight from b12 and adding weights to
a1 and a2, we obtain a contradiction which finishes the proof of Theorem 3 for k = 3. The
case k = 4 is a simple corollary of the theorem for k = 3 since f(4) = f(3).

The proof of Theorem 3 for k = 5 relies on similar techniques. However, as there are
two types of constructions, it requires more careful estimations and thus additional bounds
and considering more cases. In particular, we prove a different lower bound for bij when it
is positive and a bound on bi when ai = 0. Having this, depending on the number of i ∈ [5]
such that ai = 0, we bound the sum of all ci and obtain a contradiction in each case. The
proof for k = 6 is a simple consequence of the result for k = 5.

In the case of k ≥ 7 we first show that x must be positive. Then we separately prove
cases k = 7, k = 8 and k ≥ 9. In the first one we sum up lower bounds for ci, i ∈ [7]
and

∑
i∈[7] ai, which implies a lower bound on x. Then, by removing and adding weights

between some vertices of weights ai, aj and bij, we get an upper bound on x, which gives
a contradiction. The proofs for k = 8 and k ≥ 9 are based on analogous ideas. The main
differences come from the fact that the aforementioned bounds on ci and x are derived
using induction and the values of f(k − 2) and f(k), which are distinct for each k ≥ 7.
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