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Abstract

We give an infinitary extension of the Nešetřil–Rödl theorem for category of rela-
tional structures with special type-respecting embeddings.
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1 Introduction
We use the standard model-theoretic notion of structures allowing functions to be partial.
Let L be a language with relational symbols R ∈ L and functional symbols f ∈ L each
having its arity. An L-structure A on A is a structure with vertex set A, relations RA ⊆ Ar

for every relation symbol R ∈ L of arity r and partial functions fA : As → A for every
function symbol f ∈ L of arity s. If the set A is finite say that A is finite (it may still have
infinitely many relations if L is infinite). We consider only L-structures with finitely many
or countably infinitely many vertices. Language L is relational if it contains no function
symbols. We say that A is a substructure of B and write A ⊆ B if the identity map is
an embedding A → B. Let K be a class of L-structures. We say that K is hereditary
if it is closed for substructures. We say that L-structure U ∈ K is K-universal if every
L-structure in K embeds to U.
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Given L-structures A and B, we denote by
(
B
A

)
the set of all embeddings from A to

B. We write C −→ (B)Ak,l to denote the following statement: for every colouring χ of
(
C
A

)
with k colours, there exists an embedding f : B→ C such that χ does not take more than
l values on

(
f(B)
A

)
. For a countably infinite L-structure B and its finite substructure A, the

big Ramsey degree of A in B is the least number D ∈ N∪{∞} such that B −→ (B)Ak,D for
every k ∈ N. We say that L-structure B has finite big Ramsey degrees if the big Ramsey
degree of every finite substructure A of B is finite. In general, we are interested in the
following question: Given a hereditary class of L-structures K, do K-universal L-structures
in K have finite big Ramsey degrees? Notice that if one K-universal L-structure in K has
finite big Ramsey degrees then all of them do. The study of big Ramsey degrees originated
in 1960’s Laver’s unpublished proof that the big Ramsey degrees of the order of rationals
are finite. This result was refined and a precise formula was obtained by Devlin [8]. This
area has recently been revitalized with a rapid progress regarding big Ramsey degrees of
structures in finite binary languages (see e.g. recent survey [10]).

We call an L-structure A irreducible if for every pair of vertices u, v ∈ A there exist a
relational symbol R ∈ L and a tuple ~t ∈ RA such that u, v ∈ ~t. Given set of L-structures
F , L-structure A is F-free if there there is no F ∈ F with an embedding F → A. The
class of all (finite and countably infinite) F -free L-structures is denoted by Forbe(F). With
these definitions we can state a recent result:

Theorem 1.1 (Zucker [21]). Let L be a finite binary relational language, and F a finite
set of finite irreducible L-structures. Then every Forbe(F)-universal L-structure has finite
big Ramsey degrees. (In other words, for every finite substructure A of U there exists finite
D = D(A) such that U −→ (U)Ak,D for every k > 1.)

This result can be seen as an infinitary variant of well known Nešetřil–Rödl theorem
(one of the fundamental results of structural Ramsey theory) which can be stated as follows:

Theorem 1.2 (Nešetřil–Rödl theorem [17, 18]). Let L be a relational language, F a set
of finite irreducible L-structures. Then for every finite A ∈ Forbe(F) there exists a finite
integer d = d(A) such that for every finite B ∈ Forbe(F) and finite k > 0 there exists a
finite C ∈ Forbe(F) satisfying C −→ (B)Ak,d.

To see the correspondence of Theorems 1.1 and 1.2 choose F as in Theorem 1.1 and
a finite F -free L-structure A. By Theorem 1.1 there is a finite D = D(A) such that
every Forbe(F)-universal L-structure U satisfies U −→ (U)Ak,D for every k > 0. By
Forbe(F)-universality of U for every F -free L-structure B we have U −→ (B)Ak,D and by
compactness there exists a finite substructure C of U such that C −→ (B)Ak,D. In general,
D(A) (characterised precisely in [1]) differs from d(A), the number of linear orderings of
A. However, the proof of Theorem 1.1 can be used to recover precise bounds on d(A).

Comparing Theorems 1.1 and 1.2, it is natural to ask whether the assumptions about
finiteness of F , finiteness of the language L, and relations being only binary can be dropped
from Theorem 1.1. It is known that the first condition can not be omitted: Sauer [19] has
shown that there exist infinite families F of finite irreducible L-structures where Forbe(F)-
universal structures have infinite big Ramsey degrees of vertices. This is true even for
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language L containing only one binary relation (digraphs). The latter two conditions
remain open.

Until recently, most bounds on big Ramsey degrees were for L-structures in binary
languages only. Techniques to give bounds on big Ramsey degrees of 3-uniform hypergraphs
have been announced in Eurocomb 2019 [4] and published recently [5]; they were later
extended to languages with arbitrary relational symbols [6]. Extending links between
the Hales–Jewett theorem [12], Carlson–Simpson theorem [7] and big Ramsey degrees
established in [15], a Ramsey-type theorem for trees with successor operations has been
introduced [3] which extends to all known big Ramsey results on L-structures. However,
the following problem remains open:

Problem 1.3. Let L = {E,H} be a language with one binary relation E and one ternary
relation H. Let F be the L-structure where F = {0, 1, 2, 3}, RF = {(1, 0), (1, 2), (1, 3)}, H =
{(0, 2, 3)}. Denote by K the class of all L-structures A such that there is no monomorphism
F→ A. Do K-universal L-structures have finite big Ramsey degrees?

Thise problem demonstrates unforeseen obstacles on giving a natural infinitary gener-
alization of the Nešetřil–Rödl theorem. We give a new approach which avoids this issue
and which suggests perhaps the proper setting for big Ramsey degrees.

Finite structural Ramsey results are most often proved by refinements of the Nešetřil–
Rödl partite construction [18]. This technique does not generalize to infinite structures
due to essential use of backward induction. Upper bounds on big Ramsey degrees are
based on Ramsey-type theorems on trees (e.g. the Halper–Läuchli theorem [13], Milliken’s
tree theorem [16], the Carlson–Simpson theorem [7], and their various refinements [21, 9,
11]). This proof structure may seem unexpected at first glance but is justified by the
existence of unavoidable colourings (based on idea of Sierpiński) which are constructed by
assigning colors according to subtrees of the tree of 1-types (see e.g. [2, 10]). The exact
characterisations of big Ramsey degrees can then be understood as an argument that this
proof structure is in a very specific sense the only possible: the trees used to give upper
bounds are also encoded in the precise characterisations of big Ramsey degrees.

We briefly review the construction of tree of 1-types. Recall that a (model-theoretic) tree
is a partial order (T,≤) where the down-set of every x ∈ T is a finite chain. An enumerated
L-structure is simply an L-structure U whose underlying set is the ordinal |U|. Fix a
countably infinite enumerated L-structureU. Given vertices u, v and an integer n satisfying
min(u, v) ≥ n ≥ 0, we write u ∼U

n v, and say that u and v are of the same (quantifier-free)
type over 0, 1, . . . , n− 1, if the L-structure induced by U on {0, 1, . . . , n− 1, u} is identical
to the L-structure induced by U on {0, 1, . . . , n − 1, v} after renaming vertex v to u. We
write [u]Un for the ∼U

n -equivalence class of vertex u.

Definition 1.1 (Tree of 1-types). LetU be an infinite (relational) enumerated L-structure.
Given n < ω, write TU(n) = ω/ ∼U

n . A (quantifier-free) 1-type is any member of the
disjoint union TU :=

⊔
n<ω TU(n). We turn TU into a tree as follows. Given x ∈ TU(m)

and y ∈ TU(n), we declare that x ≤T
U y if and only if m ≤ n and x ⊇ y.
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One can associate every vertex of v ∈ U with its corresponding equivalence class in
'U

v . This way every substructure A ⊆ U corresponds to a subset of nodes of the tree
TU. Sierpiński-like colourings can be then constructed by considering shapes of the meet
closures of nodes corresponding to each given copy. Every type in x ∈ ω/ ∼U

n can be
described as an L-structure T with vertex set T = {0, 1, . . . n − 1, t} such that for every
v ∈ x it holds that L-structure induced by U on {0, 1, . . . n − 1, v} is T after renaming t
to v. This is very useful in the setting where types originating from multiple enumerated
L-structures are considered (see for instance [15, 2]).

The concept of the tree of 1-types was implicit in early proofs (such as in Devlin’s
thesis) and became explicit later. The tree of 1-types itself is, however, not sufficient to
give upper bounds on big Ramsey degrees for L-structures in languages containing symbols
of arity 3 and more. Upper bounds in [5] and [6] are based on the product form of the
Milliken tree theorem which in turn suggests the following notion of a weak type.

For the rest of this note, fix a relational language L containing a binary symbol ≤.
For all L-structures, ≤ will always be a linear order on vertices which is either finite or of
order-type ω. This will describe the enumeration. All embeddings will be monotone.

Definition 1.2 (Weak type). We denote by Lf the language L extended by unary function
symbol f . An Lf -structure T is a weak type of level ` if

1. T = {0, 1, . . . , `− 1, t0, t1, . . .} where vertices ti are called type vertices.

2. For every R ∈ L and ~t ∈ RT it holds that ~t∩ {t0, t1, . . .} is a (possibly empty) initial
segment of type vertices (i.e. set of the form {ti : i ∈ k} for some k ∈ ω) and
~t ∩ {0, 1, . . . , `− 1} 6= ∅.

3. For every i > 0 we put fT(ti) = ti−1, fT(t0) = t0, and fT is undefined otherwise.

Weak types thus give less information than standard model-theoretic k-types [14]. Func-
tion f is added to type vertices to distinguish them from normal vertices. This will be useful
in later constructions. Notice that while technically weak type has infinitely many types
vertices, thanks to condition 2 of Definition 1.2, if the language L contains no relations of
arity r + 1 or more, vertices tr−1, tr, . . . will be isolated. In particular:

Observation 1.4. If L contains only unary and binary symbols then there is one-to-one
correspondence between 1-types and weak types because only type vertex t0 carries interesting
structure.

1-types describes one vertex extensions of an initial part of the enumerated L-structure.
The weak-type equivalent of this is the following:

Definition 1.3 (Weak type of a tuple). Let A be an enumerated L-structure, T a weak
type of level ` ∈ A ⊆ ω and ~a = (a0, a1, . . . , ak−1) an increasing tuple of vertices from A\ `.
We say that ~a has type T on level ` if the function h : T → A given by:

h(x) =

{
x if x ∈ `,
ai if x = ti for some i < k
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has the property that for everyR ∈ L and~b a tuple of vertices in {0, 1, . . . , `−1, t0, t1, . . . , tk−1}
such that ~b ∩ {t0, t1, . . .} is an initial segment of type vertices and ~b ∩ {0, 1, . . . , `− 1} 6= ∅
it holds that ~b ∈ RT ⇐⇒ h(~b) ∈ RA.

Definition 1.4 (Tree of weak types). Given an enumerated L-structure U, its tree of weak
types consists of all Lf -structures T that are weak types of some tuple of U on some level
` ∈ U ordered by ⊆.

Given an enumerated L-structure A and a weak type T, we say that T extends A if
T \ {t0, t1, . . .} = A. Given two types T and T′ that extend A, and n ≥ 0, we say that T
and T′ agree as n-types if T � (A ∪ {t0, t1, . . . tn−1}) = T′ � (A ∪ {t0, t1, . . . tn−1}).

A standard technique for proving infinite Ramsey-type theorems is to work with finite
approximations of the embeddings considered. See e.g. Todorcevic’s axiomatization of
Ramsey spaces [20]. Initial approximations of our embeddings will be described as follows:

Definition 1.5 (Structure with types). Given a finite enumerated L-structure A, A+

denotes the L-structure created from the disjoint union of all weak types extending A by

1. identifying all copies of A, and,

2. identifying the copy of vertex ti of weak type T and with the copy of ti of weak type
T′ whenever T and T′ agree as i+ 1 types.

Observe that thanks to the function f added to weak types, for any two L-structures
with types A+ and B+, every embedding h : A+ → B+ is also a map from weak types of
A on level |A| to weak types of B of level |B|.

Given an L-structure A and a vertex v, we denote by A(<v) the L-structure induced
by A on {a ∈ A; a < v} and call it the initial segment of A. The key notion for our
approach is to restrict attention to embedding which behave well with respect to weak
types. That is, for every initial segment of the L-structure, the rest of the embedding can
be summarized via embedding of weak types extending the initial segments.

Definition 1.6 (Type-respecting embeddings of L-structures). Given enumerated L-structures
A and B and an embedding h : A→ B, we say that h is type-respecting if for every v ∈ A
there exists an embedding hv : A(<v)+ → B(<h(v))+ such that the weak types of tuples
in B on level h(v) consisting only of vertices of h[A] are all in the image hv[A].

Definition 1.7 (K-type-respecting embeddings of initial segments). Let A and B be two
finite enumerated L-structures. Embedding h : A+ → B+ is type-respecting if for every
(possibly infinite) L-structure A′ with initial segment A there exists an L-structure B′

with initial segment B and a type-respecting embedding g : A→ B finitely approximated
by h. That is g � A = h � A and every weak type in B′ of a tuple consisting of vertices of
g[A] of level g(maxA) is in h[A+].

Given class K of L-structures we say that h : A+ → B′+ is K-type-respecting if for every
L-structure A′ ∈ K with initial segment A there exists an structure B′ ∈ K with initial
segment B and a type-respecting embedding g : A→ B finitely approximated by h.
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Definition 1.8 (Type-respecting amalgamation property). Let K be a hereditary class
of enumerated L-structures. We say that K has type-respecting amalgamation property if
given three finite enumerated L-structures A, B, B′ ∈ K such that B′ \ B = {maxB′}
and B′ � B = B, two K-type-respecting embeddings f : A+ → B+, f ′ : A+ → B′+ and
a type-respecting (but not necessarily K-type-respecting) embedding g : B+ → B′+ such
that g � B is the identity and g ◦ f = f ′, there exists a K-type-respecting embedding
g′ : B+ → B′+ such that g′ ◦ f = f ′ and g′ � B = Id.

Given a class of L-structures K, finite A ∈ K and B ∈ K, we denote by
(
B
A

)K
the

set of all K-type-respecting embeddings A+ → B′+ for B′ an initial segment of B. We
write C −→K (B)Ak,l to denote the following statement: for every colouring χ of

(
C
A

)K
with k colours, there exists a type-respecting embedding f : B→ C such that χ does not
take more than l values on

(
f(B)
A

)K
. For a countably infinite L-structure B and its finite

suborder A, the big Ramsey degree of A in K-type-respecting embeddings of A in B is the
least number D ∈ N ∪ {∞} such that B −→K (B)Ak,D for every k ∈ N.

For type-respecting embeddings we can prove the Ramsey property in the full generality
(showing that, in this situation, Problem 1.3 is not a problem).

Theorem 1.5. Let L be a finite relational language. Let F be a finite family of finite
irreducible enumerated L-structures. Denote by KF the class of all finite or countably-
infinite enumerated L-structures A where ≤A is either finite or of order-type ω such that
for every F ∈ F there no embedding F → A. Assume that KF has the type-respecting
amalgamation property. Then for every universal L-structure U ∈ KF and every finite
A ∈ KF there is a finite D = D(A) such that U −→K (U)Ak,D for every k ∈ N.

We show the following:

Proposition 1.6. Let L be a finite language consisting of binary and unary relational
symbols only. Let F be a finite family of enumerated irreducible L-structures. Then KF has
the type-respecting amalgamation property. Moreover, Theorem 1.5 implies Theorem 1.1.

Proof. Fix L, F and KF . Let A, B, B′ ∈ KF , f : A+ → B+, f ′ : A+ → B′+ and
g : B+ → B′+ be as in Definition 1.8. By Observation 1.4, in order to specify g′, it is only
necessary to give, for every weak type T extending A, an image of its type vertex t0 ∈ T .
Let t′ ∈ B+ be a vertex corresponding to t0. We consider two cases. (1) If t′ ∈ f [A+] then
we put g′(t′) = g(t′). (2) If t′ /∈ f [A+] we put g′(t′) = t′′ where t′′ is the only possible image
of t′ such that there is no relational symbol R ∈ L such that RB+ contains a tuple with
both t′′ and maxB′.

To verify that g′ is KF -type-respecting, choose A′ ∈ KF with initial segment B. Con-
struct A′′ from A by inserting a new vertex v after maxB and extending ≤A′′ . Add the
needed tuples to relations to make B′ the initial segment of A′′. Finally, for every R ∈ L
and u ∈ A′ with u > v, put (u, v) ∈ RA′′ if and only if (g′(t), u) ∈ RB+ where is t is the type
vertex of B corresponding to the type of u in A′. Add tuples (v, u) ∈ RA′′ analogously.

To verify that A′′ ∈ KF , assume to the contrary that there is F ∈ F and embedding
e : F → A′′. Because A′ ∈ KF , clearly v ∈ e[F ]. Because B′ ∈ KF we also know that
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e[F ] contains vertices of A′′ \B′. Since F is irreducible, all such vertices must have types
created by condition (1) above. This contradicts that f ′ is KF -type-respecting.

To see the moreover part we have to construct a universal U which is a substructure
of some U′ ∈ KF with the property that for every n ∈ N there exists N ∈ N such that
for every A ∈ KF with n vertices and every embedding e : A→ U′ there exist a structure
E ∈ KF (called an envelope) with at most N vertices and a KF -type-respecting embedding
h : E → U such that e[A] ⊆ h[E]. This follows from Section 4 of [21], because K-type-
respecting embeddings in this setup are precisely the aged embeddings from [21].

Proposition 1.7. Let L′ = {E,H,≤} and let F′ be an L′-structure created by expanding
the L-structure F from Problem 1.3 by the natural order of vertices. Denote by K the class
of all enumerated L′-structures A for which there is no monomorphism F→ A. The class
K has no type-respecting amalgamation property.

Proof. We give an explicit failure of type-respecting amalgamation showing that the use
of Observation 1.4 in the previous proof is essential. Let A be the empty L′-structure, B
be L′-structure with B = {0}, EB = HB = ∅ and B′ be L′-structure with B′ = {0, 1},
EB′ = {(0, 1)}, HB′ = ∅. Let TA be the unique weak type extending A. Let TB be
weak type extending B with ETB

= HTB
= ∅ and T′B weak type extending B with

ET′
B
= ∅ and HT′

B
= {(0, t0, t1)}. Notice that TB and T′B agree as 1-types and thus in B+

their vertices t0 are identified. Finally, let TB′ and T′B′ be weak types extending B′ with
ETB′ = HT′

B′ = {(0, 1), (1, t0)}, HTB′ = ∅, HT′
B′ = {(0, t0, t1)}. Again TB and TB′ agree

as 1-types. Now let f : A+ → B+ map TA to TB and f+ : A+ → B+ map TA to TB′ .
It is easy to check that these are K-type-respecting. g : B+ → B′+ can be constructed
to be type-respecting by mapping type TB to TB′ and T′B to T′B′ . However there is no
K-type-respecting g′ : B+ → B′+. To see that, observe that any image of T′B must agree
as 1-type with TB′ and consider A′ with A′ = {0, 1, 2} and HA′ = {(0, 1, 2)}. A is an
initial segment of A′ and there is no way to extend g′ to a K-type-respecting embedding
of A′ to some L-structure in K since it will always add vertex v after vertex 0 of A in a
way that there is a monomorphism from F to {0, v, 1, 2}.

We conjecture that the answer to Problem 1.3 is in fact negative. It is possible that by
concentrating on type-respecting embeddings, the study of big Ramsey degrees can find a
proper setting.
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