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Abstract

For a class G of graphs, the objective of Subgraph Complementation to G
is to find whether there exists a subset S of vertices of the input graph G such that
modifying G by complementing the subgraph induced by S results in a graph in G.
We obtain a polynomial-time algorithm for the problem when G is the class of graphs
with minimum degree at least k, for a constant k, answering an open problem by
Fomin et al. (Algorithmica, 2020). When G is the class of graphs without any in-
duced copies of the star graph on t+1 vertices (for any constant t ≥ 3) and diamond,
we obtain a polynomial-time algorithm for the problem. This is in contrast with a
result by Antony et al. (Algorithmica, 2022) that the problem is NP-complete and
cannot be solved in subexponential-time (assuming the Exponential Time Hypothe-
sis) when G is the class of graphs without any induced copies of the star graph on
t+ 1 vertices, for every constant t ≥ 5.
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1 Introduction
Complementation is a very fundamental graph operation and modifying a graph by comple-
menting an induced subgraph to satisfy certain properties is a natural algorithmic problem
on graphs. The operation of complementing an induced subgraph, known as subgraph
complementation, is introduced by Kamiński et al. [1] in connection with clique-width of
graphs. For a class G of graphs, the objective of Subgraph Complementation to G
is to find whether there exists a subset S of the vertices of the input graph G such that
complementing the subgraph induced by S in G results in a graph in G. Fomin et al. [2]
studied this problem on various classes G of graphs. They obtained that the problem can be
solved in polynomial-time when G is bipartite, d-degenerate, or co-graphs. In addition to
this, they proved that the problem is NP-complete when G is the class of all regular graphs.
Antony et al. [3] studied this problem when G is the class of H-free graphs (graphs without
any induced copies of H). They proved that the problem is polynomial-time solvable when
H is a complete graph on t vertices. They also proved that the problem is NP-complete
when H is a star graph on at least 6 vertices or a path or a cycle on at least 7 vertices.
Later Antony et al. [4] proved that the problem is polynomial-time solvable when H is
paw, and NP-complete when H is a tree, except for 41 trees of at most 13 vertices. It has
been proved [3,4] that none of these hard problems admit subexponential-time algorithms
(algorithms running in time 2o(n)), assuming the Exponential Time Hypothesis.

Fomin et al. [2] proved that the problem is polynomial-time solvable not only when
G is the class of d-degenerate graphs but also when G is any subclass of d-degenerate
graphs recognizable in polynomial-time. This implies that the problem is polynomial-time
solvable when G is the class of r-regular graphs or the class of graphs with maximum
degree at most r (for any constant r). They asked whether the problem can be solved
in polynomial-time when G is the class of graphs with minimum degree at least r, for a
constant r. We resolve this positively and obtain a stronger result - a simple quadratic
kernel for the following parameterized problem: Given a graph G and an integer k, find
whether G can be transformed into a graph with minimum degree at least k by subgraph
complementation (here the parameter is k). The result follows from an observation that if
G has more than 2k2 − 2 vertices, then it is a yes-instance of the problem.

When G is the class of graphs without any induced copies of the star graph on t + 1

vertices (for any fixed t ≥ 3) and the diamond ( ), we obtain a polynomial-time
algorithm. When t = 3 this graph class is known as linear domino and is the class of line
graphs of triangle-free graphs. Cygan et al. [5] have studied the polynomial kernelization
of edge deletion problem for this target graph class. When t = 4, the graph class is the line
graphs of linear hypergraphs of rank 3. The technique that we use is similar to that given
in [3] and [4] for obtaining polynomial-time algorithms when G is H-free, for H being a
complete graph on t vertices or a paw. Our result is in contrast with the result by Antony
et al. [3] that the problem is NP-complete and cannot be solved in subexponential-time
(assuming the Exponential Time Hypothesis) when H is a star graph on t+ 1 vertices, for
every constant t ≥ 5.
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Preliminaries

A diamond is the graph , and a star graph on t + 1 vertices, denoted by K1,t, is
the tree with t degree-1 vertices and one degree-t vertex. The degree-t vertex of a star is
known as the center of the star. For example, K1,3, also known as a claw, is the graph

. A complete graph on t vertices is denoted by Kt. By G we denote the complement
graph of G. The open neighborhood and closed neighborhood of a vertex v are denoted by
N(v) and N [v] respectively. The underlying graph will be evident from the context. For
a subset S of vertices of G, by G[S] we denote the graph induced by S in G. For a given
graph G and a set S ⊆ V (G), we define the graph G⊕S as the graph obtained from G by
complementing the subgraph induced by S, i.e., an edge uv is in G ⊕ S if and only if uv
is a nonedge in G and u, v ∈ S, or uv is an edge in G and {u, v} \ S 6= ∅. The operation
is called subgraph complementation. Let H be a set of graphs. We say that a graph G is
H-free if G does not have any induced copies of any of the graphs in H. If H = {H}, then
we say that G is H-free. The general definition of the problem that we deal with is given
below.

SC-to-G : Given a graph G, find whether there is a set S ⊆ V (G) such that G⊕S ∈ G.
In a parameterized problem, apart from the usual input, there is an additional integer

input known as the parameter. A graph problem is fixed-parameter tractable (FPT) if
it can be solved in time f(k)nO(1), where n is the number of vertices and f(k) is any
computable function. A parameterized problem admits a kernel if there is a polynomial-
time algorithm which takes as input an instance (I ′, k′) of the problem and outputs an
instance (I, k) of the same problem so that |I|, k ≤ f(k) for some computable function
f(k), and (I ′, k′) is a yes-instance if and only if (I, k) is a yes-instance (here, k′ and k are
the parameters). A kernel is a polynomial kernel if f(k) is a polynomial function. It is
known that a problem admits an FPT algorithm if and only if it admits a kernel. An FPT
algorithm implies that there is a polynomial-time algorithm to solve the problem when the
parameter is a constant. We refer to the book [6] for further exposition on these topics.

2 Algorithms
We obtain our results in this section. Let Gk be the class of graphs with minimum degree
at least k. We prove that a no-instance of SC-to-Gk cannot be very large.

Lemma 2.1. Let G be a graph with more than 2k2 − 2 vertices. Then G is a yes-instance
of SC-to-Gk.

Proof. Let M be the set of vertices in G with degree less than k. Clearly, M ⊆ S for every
solution S (i.e., G ⊕ S ∈ Gk). Let |M | = m. Let M ′ be the set of vertices in V (G) \M
adjacent to at least one vertex in M . As each vertex in M has degree at most k − 1, we
obtain that |M ′| ≤ m(k − 1).

Let M ′′ = V (G) \ (M ∪M ′). Let X be the set of vertices in M ′′ having degree at least
2k−m− 1 in G. If |X| ≥ k, then G⊕ (M ∪X ′) ∈ Gk, where X ′ is any subset of k vertices
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of X - note that degree of every vertex in X ′ is at least (2k−m− 1) +m− (k− 1) = k, in
G⊕ (M ∪X ′). Therefore, assume that |X| ≤ k− 1. Every vertex in M ′′ \X has degree at
most 2k −m− 2 in G. Then, every maximal independent set in M ′′ \X has size at least
|M ′′ \ X|/(2k −m − 1). Therefore, if |M ′′ \ X| ≥ k(2k −m − 1), then for any maximal
independent set I of M ′′ \X, G⊕ (M ∪I) ∈ Gk. Hence assume that |M ′′ \X| ≤ k(2k−m−
1)−1. Therefore, if G is a no-instance of SC-to-Gk, then the number of vertices in G is at
most |M |+ |M ′|+ |X|+ |M ′′\X| ≤ m+m(k−1)+(k−1)+k(2k−m−1)−1 = 2k2−2.

Lemma 2.1 gives a polynomial-time algorithm for the problem: If G has more than
2k2 − 2 vertices, then return YES, and do an exhaustive search for a solution otherwise.
Lemma 2.1 also gives a simple quadratic kernel for the problem parameterized by k: For
an input (G, k) if G has more than 2k2 − 2 vertices, then return a trivial yes-instance,
and return the same instance otherwise. By a result from [3], SC-to-G and SC-to-G are
polynomially equivalent. Therefore, we obtain a polynomial-time algorithm for SC-to-G
when G is the class of graphs with maximum degree at most n−k, for a constant k. It also
implies a quadratic kernel for the problem parameterized by k. It remains open whether
the following problem is NP-complete: Given a graph G and an integer k, find whether G
can be subgraph complemented to a graph with minimum degree at least k. We note that,
the problem is NP-complete if the objective is to make the input graph k-regular [2].

Destroying stars and diamonds

Let G be the class of {K1,t, diamond}-free graphs, for any fixed t ≥ 3. We give a polynomial-
time algorithm for SC-to-G. The concept of (p, q)-split graphs was introduced by Gyár-
fás [7]. For p ≥ 1, and q ≥ 1, if the vertices of a graph G can be partitioned into two sets
P and Q in such a way that the clique number of G[P ] and the independence number of
G[Q] are at most p and q respectively (i.e., G[P ] is Kp+1-free and G[Q] is (q + 1)K1-free),
then G is called a (p, q)-split graph and (P,Q) is a (p, q)-split partition of G.

Proposition 2.2 ([3, 8, 9]). For any fixed constants p ≥ 1 and q ≥ 1, recognizing a (p, q)-
split graph and obtaining all (p, q)-split partitions of a (p, q)-split graph can be done in
polynomial-time.

Algorithm for SC-to-G, where G is {K1,t, diamond}-free graphs, for any constant
t ≥ 3.
Input: A graph G.
Output: If G is a yes-instance of SC-to-G, then returns YES; otherwise returns NO.

Step 1 : Let S be the set of all degree-2 vertices of all the induced diamonds in G. If
G⊕ S ∈ G, then return YES.

Step 2 : Let r be the center of any induced K1,t in G and let I be the set of isolated
vertices in the subgraph induced by N(r) in G. For every subset S ⊆ I such that
|S| ≥ |I| − t + 2, if G⊕ S ∈ G, then return YES.
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Step 3 : For every edge uv in G, do the following:

1. If N(u) \ N [v] or N(v) \ N [u] does not induce a (t − 1, t − 1)-split graph,
then continue with Step 3.

2. Compute L(uv), the list of all (t − 1, t − 1)-split partitions of the graph
induced by N(u) \N [v].

3. Compute L(uv), the list of all (t − 1, t − 1)-split partitions of the graph
induced by N(v) \N [u].

4. Compute L(uv), the list of all partitions of the graph induced byN(u)∩N(v)
into an independent set of size at most t− 1 and the rest.

5. For every (S1, T1) ∈ L(uv), for every (S2, T2) ∈ L(uv), for every (S3, T3) ∈
L(uv), do the following:

(a) Let S = S1 ∪ S2 ∪ S3 ∪ {u, v}. If G⊕ S ∈ G, return YES.
(b) For every vertex w ∈ N [u] ∩ N [v], let S = S1 ∪ S2 ∪ S3 ∪ {u, v, w}. If

G⊕ S ∈ G, return YES.
(c) For every edge xy in the graph induced by N [u] ∩ N [v], if the graph

induced by J = N [x] ∩ N [y] ∩ N [u] ∩ N [v] is not a split graph then
continue with the current step. Otherwise, for every split partition
(S4, T4) of the graph induced by J , let S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ {u, v}.
If G⊕ S ∈ G, then return YES.

Step 4 : Return NO.

Lemma 2.3 and 2.4 deals with the case when G is a yes-instance having a solution which
is an independent set, the case handled in Step 1 and 2 of the algorithm.

Lemma 2.3. Assume that G is not diamond-free. Let S ⊆ V (G) such that G ⊕ S ∈ G
and S is an independent set. Then S is the set of all degree-2 vertices of all the induced
diamonds in G.

Proof. Since S is an independent set and G ⊕ S ∈ G, both the degree-2 vertices of every
induced diamond in G must be in S. Assume for a contradiction that S has a vertex v
which is not a degree-2 vertex of any of the induced diamonds in G. Let D = {d1, d2, d3, d4}
induces a diamond in G, where d1 and d2 are the degree-2 vertices of the diamond. Clearly,
S ∩D = {d1, d2}. We know that v 6= d1 and v 6= d2. If v is not adjacent to d3 in G, then
{v, d1, d2, d3} induces a diamond in G⊕S, which is a contradiction. Therefore, v is adjacent
to d3. Similarly, v is adjacent to d4. Then {v, d1, d3, d4} induced a diamond in G, where v
and d1 are the degree-2 vertices, which is a contradiction.

Lemma 2.4. Assume that G has no induced diamond but has at least one induced K1,t.
Let S ⊆ V (G) such that G⊕S ∈ G and S is an independent set. Let r be the center of any
induced K1,t in G. Let I be the set of isolated vertices in the subgraph induced by N(r) in
G. Then S ⊆ I and |S| ≥ |I| − t + 2.
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Proof. If r ∈ S, then none of the vertices in N(r) is in S - recall that S is an independent
set. But then, none of the induced K1,t centered at r is destroyed in G ⊕ S. Therefore,
r /∈ S. Since G is diamond-free, N(r) induces a cluster (graph with no induced path of
length 3) J in G. Since r is the center of an induced K1,t in G, there are at least t cliques
in J . Since G ⊕ S is K1,t-free, S must contain all vertices of at least two cliques in J .
Since S is an independent set, S contains at least two isolated vertices, say s1 and s2, in
J . First we prove that S ⊆ N(r). For a contradiction, assume that there is a vertex v ∈ S
such that v is not adjacent to r. Then {v, s1, s2, r} induces a diamond in G⊕ S, which is
a contradiction. Therefore, S ⊆ N(r). Next we prove that S ⊆ I. For a contradiction,
assume that there is a vertex v ∈ S \ I. Then v is part of a clique J ′ of size at least 2 in J .
Let v′ be any other vertex in J ′. Since S is an independent set, v′ /∈ S. Then {v, v′, s1, r}
induces a diamond in G⊕S, which is a contradiction. Therefore, S ⊆ I. If |S| < |I|−t+2,
then there is a K1,t centered at r in G⊕ S, which is a contradiction.

Let G be a yes-instance of SC-to-G. Let S ⊆ V (G) be such that |S| ≥ 2, G⊕ S ∈ G,
and S be not an independent set. Let u, and v be two adjacent vertices in S. Then with
respect to S, u, v, we can partition the vertices in V (G) \ {u, v} into eight sets as given
below, and shown in Figure 1.

(i) NS(uv) = S ∩N(u) ∩N(v)

(ii) NS(ūv̄) = S ∩N [u] ∩N [v]

(iii) NS(uv̄) = S ∩ (N(u) \N [v])

(iv) NS(ūv) = S ∩ (N(v) \N [u])

(v) NT (uv) = (N(u) ∩N(v)) \ S

(vi) NT (ūv̄) = (N [u] ∩N [v]) \ S

(vii) NT (uv̄) = (N(u) \N [v]) \ S

(viii) NT (ūv) = (N(v) \N [u]) \ S

We notice that S = NS(uv) ∪NS(ūv̄) ∪NS(uv̄) ∪NS(ūv) ∪ {u, v}.

NS(ūv̄)

NS(uv)

NS(uv̄) NS(ūv)
NT (uv̄) NT (ūv)

NT (uv)

NT (ūv̄)

u v

Figure 1: Partitioning of vertices of G based on S and two adjacent vertices u, v ∈ S. The
bold lines represent the adjacency of vertices u and v [3].

Observation 2.5. Then the following statements are true.

(i) N(u) \N [v] induces a (t− 1, t− 1)-split graph with a (t− 1, t− 1)-split partition of
(NS(uv), NT (uv)).

(ii) N(v) \N [u] induces a (t− 1, t− 1)-split graph with a (t− 1, t− 1)-split partition of
(NS(vu), NT (vu)).
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(iii) NT (uv) induces an independent set with at most (t− 1) vertices.

(iv) NS(ūv̄) induces a clique. If xy is an edge of the clique, then N [x]∩N [y] in N [u]∩N [v]
induces a split graph with one split partition being (NS(ūv̄), (N [x] ∩ N [y] ∩ N [u] ∩
N [v]) \ (NS(ūv̄))).

Proof. If NS(uv) has a Kt, then v along with the vertices of the Kt induce a K1,t in G⊕S.
If NT (uv) has an independent set of size t, then u along with the vertices of the independent
set induce a K1,t in G⊕S. Therefore, (i) holds true. Similarly we can prove the correctness
of (ii). If there are two adjacent vertices x and y in NT (uv), then {x, y, u, v} induces a
diamond in G⊕S. Therefore, NT (uv) is an independent set. If it has at least t vertices then
there is an induced K1,t formed by those vertices and u in G⊕S. Therefore, (iii) holds true.
If there are two nonadjacent vertices x and y in NS(ūv̄), then there is a diamond induced
by {x, y, u, v} in G ⊕ S. Therefore, NS(ūv̄) is a clique. Assume that x, y ∈ NS(ūv̄). If x
and y have two adjacent common neighbors x′ and y′ in NT (ūv̄), then {x, y, x′, y′} induces
a diamond in G⊕ S. Therefore, N [x] ∩N [y] ∩N [u] ∩N [v] is a split graph with one split
partition being (NS(ūv̄), (N [x] ∩N [y] ∩N [u] ∩N [v]) \ (NS(ūv̄))).

Lemma 2.6. G is a yes-instance of SC-to-G if and only if the algorithm returns YES.

Proof. Since the algorithm returns YES only when a solution is found, the backward direc-
tion of the statement is true. For the forward direction, let G be a yes-instance. Assume
that there exists a solution S which is an independent set. Further, assume that G has
an induced diamond. Then by Lemma 2.3, S is the set of all degree-2 vertices of the
induced diamonds in G. Then Step 1 returns YES. Assume that G is diamond-free. Then
by Lemma 2.4, S ⊆ I, where I is the set of isolated vertices in the graph induced by the
neighbors of r, for a center r of an induced K1,t in G. Further |S| ≥ |I| − t+ 2. Then Step
2 returns YES. Let S be a solution which is not an independent set. Let uv be an edge
in the graph induced by S. The algorithm will discover uv in one iteration of Step 3. By
Observation 2.5, we know that the graph induced by N(u) \ N [v] is a (t − 1, t − 1)-split
graph with a (t−1, t−1)-split partition (NS(uv), NT (uv)). Similarly, the graph induced by
N(v)\N [v] is a (t−1, t−1)-split graph with a (t−1, t−1)-split partition (NS(uv), NT (uv)).
Further, NT (uv) is an independent set of size at most t − 1. Therefore, in one iteration
of Step 3.5, we obtain S1 = NS(uv), S2 = NS(uv), and S3 = NS(uv). If NS(ūv̄) is empty,
then Step 3.5(a) returns YES. If NS(ūv̄) is a singleton set, then Step 3.5(b) returns YES.
Assume that |NS(ūv̄)| ≥ 2. By Observation 2.5, NS(ūv̄) is a clique and for every edge xy
in it, the common neighborhood of x and y in N [u]∩N [v] is a split graph with a partition
being NS(ūv̄) and the rest. The algorithm will discover such an edge xy in one of the
iterations of Step 3.5(c) and NS(ūv̄) will be discovered as S4. Then YES is returned at
Step 3.5(c).

By Proposition 2.2, (t− 1, t− 1)-split graphs can be recognized in polynomial-time and
all (t− 1, t− 1)-split partitions of a (t− 1, t− 1)-split graph can be found in polynomial-
time. Therefore, each step in the algorithm runs in polynomial-time. Then we obtain
Theorem 2.7 from Lemma 2.6.
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Theorem 2.7. Let G be the class of {K1,t, diamond}-free graphs for any constant t ≥ 3.
Then SC-to-G can be solved in polynomial-time.

It remains open whether the problem is polynomial-time solvable when G is H-free for
an H ∈ {K1,3, K1,4, diamond}.
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