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Abstract

We give a new explicit construction of strong blocking sets in finite projective
spaces using expander graphs and asymptotically good linear codes. Using the re-
cently found equivalence between strong blocking sets and linear minimal codes, we
give the first explicit construction of Fq-linear minimal codes of length n and dimen-
sion k such that n is at most a constant times qk. This solves one of the main open
problems on minimal codes.
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1 Introduction
Blocking sets are sets of points in a finite projective or affine space that meet every hyper-
plane non-trivially. Studying these objects is a classical topic in finite geometry [15,17]. A
stronger notion of blocking sets is that of a set of points that meets every hyperplane in a
spanning set. For example, in a projective plane, the set of all points on a single line is a
blocking set while the set of all points on three non-concurrent lines is a strong blocking
set. These special kind of blocking sets have been studied under the names of generating
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sets [23, 25], cutting blocking sets [1, 12, 16] and strong blocking sets [21, 24]. It is the last
terminology that we use in this paper.

Strong blocking sets have recently been shown to be in one-to-one correspondence with
the notion of minimal codes [1,32]. Minimal codes are linear subspaces of Fnq such that the
support of any non-zero vector in the subspace does not contain the support of any other
non-zero vector of the subspace as a proper subset. These codes have been studied for
their application in decoding algorithms [27] and cryptography [18,29]. Recently, minimal
codes have also been linked to perfect hash families [14], which have important applications
in computer science. The main problem is to find minimal codes of dimension k and the
shortest possible length n as a function of k and the size of the underlying finite field
Fq [18]. It is known that any strong blocking set in the (k − 1)-dimensional projective
space obtained from Fkq , denoted by PG(k− 1, q), must have size at least (q+1)(k− 1) [3],
which implies that any minimal code of length n and dimension k over Fq must satisfy
n ≥ (q+1)(k− 1). Therefore, we would like to construct minimal codes whose length is at
most a constant times qk. It follows from [3, Theorem 2.8] that such a minimal code will
also be an asymptotically good error-correcting code, which provides another motivation
for the problem. While it is easy to show the existence of such short minimal codes using
the probabilistic method (for the best results, see [30] for q = 2 and [2, 14] for q > 2),
it is a challenging and central open problem to give explicit constructions [20]. Many
constructions of minimal codes have appeared in the last few years [1, 10, 20, 22, 23], and
the current best explicit construction has length n ∼ q4k/4 [11, 19].

In this paper, we give a new graph-theoretical construction of strong blocking sets,
and thus minimal codes. By using asymptotically good linear codes and constant-degree
expander graphs, we obtain an explicit construction of strong blocking sets of size cqk, in
the projective space PG(k − 1, q), for an absolute constant c.

A graph parameter known as the (vertex) integrity of a graph plays a crucial role
in our construction. We prove a new lower bound on the vertex integrity of d-regular
graphs in terms of their eigenvalues. Our lower bound implies that any expander graph of
bounded degree on n vertices has vertex integrity at least a constant times n. We combine
explicit constructions of such graphs with explicit constructions of asymptotically good
linear codes, to get explicit minimal codes.

There is a rich history of using expander graphs to construct asymptotically good linear
codes [6, 31, 33]. Our work contributes to this line of research by using these graphs in a
novel way to construct (asymptotically good) minimal codes. Our construction is the first
of its kind in finite geometry as it uses graphs to pick a subset of lines in a finite projective
space whose union has certain intersection properties with hyperplanes. This construction
has already led to explicit constructions of small affine blocking sets [14], and we expect
that it will lead to many new results in finite geometry.
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2 Preliminaries
Definition 2.1. The (Hamming) support of a vector v ∈ Fnq is the set σ(v) := {i : vi 6=
0} ⊆ [n]. The (Hamming) weight of v is wt(v) := |σ(v)|.

Definition 2.2. An [n, k, d]q code C is a k-dimensional subspace of Fnq , with d := min{wt(v) :

v ∈ C \ {~0}} is called the minimum distance of C. The elements of C are called codewords.
Moreover, a generator matrix for C is a matrix G ∈ Fk×nq such that C = {uG : u ∈ Fkq}.

Definition 2.3. Let {ni}i≥1 be an increasing sequence of positive numbers and suppose
that there exist sequences {ki}i≥1 and {di}i≥1 such that for all i ≥ 1 there exists an
[ni, ki, di]q code Ci. Then the sequence {Ci}i≥1 is called an (R, δ)q-family of codes, where
the rate R of this family is defined as R = lim infi→∞

ki
ni
, and the relative distance δ is

defined as δ = lim infi→∞
di
ni
.

One of the central problems on error-correcting codes is to understand the trade-off
between the rate and the relative distance of codes. A family of codes for which R > 0 and
δ > 0, is known as an asymptotically good code. An easy probablistic argument known as
the Gilbert-Varshamov bound shows the existence of such codes for every δ ∈ [0, 1− 1/q)
and R = 1 − Hq(δ), where Hq(x) := x logq(q − 1) − x logq(x) − (1 − x) logq(1 − x), is
the q-ary entropy function, defined on the domain 0 ≤ x ≤ 1 − 1/q. The first explicit
construction of asymptotically good codes was given by Justesen [28], who showed that for
every 0 < R < 1/2, there is an explicit family of codes with rate R and relative distance
δ ≥ (1 − 2R)H−1q

(
1
2

)
. Note that for any prime power q, H−1q

(
1
2

)
≥ H−12

(
1
2

)
> 0.11, and

thus there are absolute constants R, δ > 0, not depending on q, for which we have an
explicit construction of a family of Fq-linear codes with rate R and relative distance δ.

Definition 2.4. Let C be an [n, k, d]q code. A nonzero codeword v ∈ C is said to be minimal
(in C) if σ(v) is minimal with respect to the inclusion in the set σ(C) := {σ(u) : u ∈ C\{~0}}.
The code C is a minimal linear code if all its nonzero codewords are minimal.

For k > 1, the finite projective space of dimension k − 1 over the finite field Fq is
defined as PG(k− 1, q) :=

(
Fkq \ {0}

)
/ ∼, where u ∼ v if u = λv for some non-zero λ ∈ Fq

(in some circles the same object will be denoted by Pk−1(Fq)). The equivalence class that
a non-zero vector v belongs to is denoted by [v]. The 1-dimensional, 2-dimensional, . . . ,
(k−1)-dimensional vector subspaces of Fkq correspond to the points, lines, . . . , hyperplanes
of PG(k−1, q). We denote the span of a subset S of points in a projective space by 〈S〉 and
the dimension dim(〈S〉) is one less than the vector space dimension of the corresponding
vector subspace. For example, the span of two distinct points P,Q in a projective space,
which we will also denote by 〈P,Q〉, is a 1-dimensional projective subspace corresponding
to a 2-dimensional vector subspace, and we refer to it as the line joining P and Q in
PG(k − 1, q).

Definition 2.5. A projective [n, k, d]q system is a (multi)set of n points,M⊆ PG(k−1, q),
such that 〈M〉 = PG(k − 1, q) and d = n−max{|H ∩M| : H is a hyperplane}.
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A projective [n, k, d]q system is simply a dual interpretation of a nondegenerate [n, k, d]q
code, that is, codes with no identically zero entry in all the codewords. If G is the k × n
generator matrix of the code, then the columns of G correspond to a multiset of n points
in PG(k−1, q) with the property that the maximum intersection with a hyperplane of this
multiset is equal to n− d. This process can clearly be reversed.

Definition 2.6. A setM⊆ PG(k−1, q) is said to be a strong blocking set if 〈H∩M〉 = H,
for every hyperplane H of PG(k − 1, q).

Theorem 2.7 (see [1], [32]). Let C be a nondegenerate [n, k, d]q code and let G = (g1 |
. . . | gn) ∈ Fk×nq be any of its generator matrices. The following are equivalent:

1. C is a minimal code;

2. M = {[g1], . . . , [gn]} is a strong blocking set in PG(k − 1, q).

All known explicit constructions of strong blocking sets are obtained as union of lines
in the projective space. This is mainly due to the fact that with such a structure it is easy
to control their intersections with subspaces. In particular, the main feature that these
constructions possess is the following stronger property than being a strong blocking set.

Definition 2.8. A set L of lines in a projective space satisfies the avoidance property if
there is no codimension-2 space meeting every line ` ∈ L.

The relation between these sets of lines and strong blocking sets is the observation
of Fancsali and Sziklai [23, Theorem 11] that if a set L of lines satisfying the avoidance
property, then the point-set B := ∪`∈L` is a strong blocking set.

For our explicit construction of strong blocking sets we will need explicit constructions
of constant-degree expander graphs. Informally, expander graphs have the property that
for any vertex subset which is not too large, its boundary is at least a constant times its
size. Expansion in graphs can be measured by their spectral properties (see [26]). For a
graph G we denote the eigenvalues of its adjacency matrix by λ1 ≥ λ2 ≥ · · · ≥ λn. If G is
d-regular, then λ1 = d. Moreover, if it is also connected then λ2 < d. A graph G is called
an (n, d, λ)-graph if it is a d-regular graph on n vertices with |λi| ≤ λ for all i > 1. The
smaller the value of λ, the larger is the expansion of an (n, d, λ)-graph. Asymptotically, the
smallest possible value is close to 2

√
d− 1, and the graphs achieving that bound are known

as Ramanujan graphs. We will use the following result of Alon on explicit constructions
of almost Ramanujan graphs.

Theorem 2.9 (see [5, Theorem 1.3]). For every positive integer d, and every ε > 0, there
is an n0(d, ε), such that for all n ≥ n0(d, ε), with nd even, there is an explicit construction
of an (n, d, λ)-graph Gε

n,d with λ ≤ 2
√
d− 1 + ε
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3 Integrity of a graph
We will need the following graph parameter, known as the (vertex) integrity of a graph,
which was introduced in the late 1980s as a measure of the robustness of the connectivity
of a network under vertex deletion [7, 9].

Definition 3.1. Let G = (V,E) be a simple connected graph. For any subgraph H, let
κ(G) denote the largest size of a connected component in H. The integrity of G is the
integer

ι(G) := min
S⊆V

(|S|+ κ(G− S)) .

It is a challenging problem to determine the integrity of graphs precisely, or even asymp-
totically (see [7] for an old survey and [8, 13] for some recent bounds on different families
of graphs). We prove new lower bounds on the vertex integrity of (n, d, λ)-graphs. First,
we relate the integrity of a graph to another graph parameter.

Definition 3.2. For a graph G, let z(G) denote the largest integer z so that there are two
disjoint sets of vertices in G, each of size z, with no edge connecting them.

Proposition 3.3. For every graph G = (V,E) on n vertices,

n− 2z(G) ≤ ι(G) ≤ n− z(G).

Theorem 3.4. For any (n, d, λ)-graph G, we have ι(G) ≥
(
d−λ
d+λ

)
n.

Proof. Let z(G) be the maximum integer z such that the vertices of a graph G contains
two disjoint parts of size z each with no edge between them. A direct application of the
expander mixing lemma implies that

z(G) ≤ λn

d+ λ
.

Applying the lower bound ι(G) ≥ n − 2z(G) from Proposition 3.3, implies ι(G) ≥ n −
2 λ
d+λ

n = d−λ
d+λ

n.

4 Constructing Strong Blocking Sets from Graphs
Definition 4.1. Let M = {P1, . . . , Pn} be a set of n points in PG(k − 1, q) and let
G = (M, E) be a graph with vertex set equal toM. We define the following sets of lines

L(M, G) := {〈Pi, Pj〉 : PiPj ∈ E}

and the following set of points

B(M, G) :=
⋃

`∈L(M,G)

`,

obtained fromM and G.
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We make the following crucial observation relating the properties of the graph G and
the projective sets defined above.

Proposition 4.2. Let M = {P1, . . . , Pn} be a set of points in PG(k − 1, q) and let
G = (M, E) be a graph whose set of vertices is M. If for every S ⊆ M there exists
a connected component C in G − S such that 〈S ∪ C〉 = PG(k − 1, q), then the set
L(M, G) = {〈Pi, Pj〉 : PiPj ∈ E} satisfies the avoidance property, that is, no codimension-
2 subspace of PG(k − 1, q) meets every line of L(M, G).

Lemma 4.3. LetM be a projective [n, k, d]q system and let G = (M, E) be a graph such
that ι(G) ≥ n− d+ 1. Then L(M, G) satisfies the avoidance property, and thus B(M, G)
is a strong blocking set in PG(k − 1, q) of size at most n+ (q − 1)|E|.

Proof. Let S be an arbitrary subset ofM. Since ι(G) ≥ n−d+1, there exists a connected
component C in G− S such that |S|+ |C| ≥ n− d+ 1. From the definition of projective
systems, it follows that every hyperplane meets M in at most n − d points. Therefore,
S ∪ C ⊆M is not contained in any hyperplane of PG(k − 1, q), thus implying 〈S ∪ C〉 =
PG(k − 1, q). From Proposition 4.2, we conclude that L(M, G) satisfies the avoidance
property, and thus B(M, G) is a strong blocking set. Each line in L(M, G) contains
exactly q + 1 points, of which at most q − 1 are non-vertices. As there are |E|-many lines
in this set, we get |B(M, G)| ≤ n+ (q − 1)|E|.

Finally, we prove the main result of our paper.

Theorem 4.4. There is an absolute constant c such that for every prime power q, there
is an explicit construction of strong blocking sets of size at most cqki in PG(ki − 1, q), for
some increasing infinite sequence {ki}i∈N.

Proof. Let R be any constant satisfying 0 < R < 1/2 and let δ = (1− 2R)0.11. LetMi be
projective [ni, ki, di]q systems given by the Justesen construction [28]. Then limi→∞ ki/ni =
R and limi→∞ di/ni ≥ (1 − 2R)H−1q (1/2) > δ. Therefore, there exists an i0 such that for
all i ≥ i0, we have di/ni ≥ δ and ki/ni ≥ R/2. For the rest of this proof let i0 be
large enough. Let {Gi}i≥i0 be an explicit family of (ni, d, λ)-graphs, where d and λ are
positive constants for which (d− λ)/(d+ λ) ≥ 1− δ + 1/ni. From Theorem 2.9, it follows
that such an explicit construction of graphs is always possible. By Theorem 3.4, we have
ι(Gi) ≥ (1 − δ)ni + 1 ≥ ni − di + 1. Therefore, by Lemma 4.3, B(Mi, Gi) is a strong
blocking set in PG(ki − 1, q) of size at most

ni + (q − 1)
dni
2

<
d

2
qni ≤

d

R
qki.

This concludes the proof with c = d
R
.

In the expanded version of this short abstract [4], we obtain the optimal value of the
constant c by using algebraic-geometric codes, and in particular, we show that we can take
c = 20 for large enough q. Moreover, for any fixed q ≥ 7, and k → ∞, we show that our
explicit construction is better than [11].
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