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Abstract

Let C be a set of curves in the plane such that no three curves in C intersect at a
single point and every pair of curves in C intersect at exactly one point which is either
a crossing or a touching point. According to a conjecture of János Pach the number
of pairs of curves in C that touch each other is O(|C|). We prove this conjecture for
x-monotone curves.
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1 Introduction
We study the number of tangencies within a family of 1-intersecting x-monotone planar
curves. A planar curve is a Jordan arc, that is, the image of an injective continuous function
from a closed interval into R2. If no two points on a curve have the same x-coordinate,
then the curve is x-monotone. We consider families of curves such that every pair of curves
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intersect at a finite number of points. Such a family is called t-intersecting if every pair of
curves intersects at at most t points. An intersection point p of two curves is a crossing
point if there is a small disk D centered at p which contains no other intersection point
of these curves, each curve intersects the boundary of D at exactly two points and in the
cyclic order of these four points no two consecutive points belong to the same curve. If
two curves intersect at exactly one point which is not a crossing point, then we say that
they are touching or tangent at that point.

The number of tangencies is the number of tangent pairs of curves. If more than
two curves are allowed to intersect at a common point, then every pair of curves might
be tangent, e.g., for the graphs of the functions x2i, i = 1, 2, . . . , n, in the interval [−1, 1].
Therefore, we restrict our attention to families of curves in which no three curves intersect at
a common point. It is not hard to construct such a family of n (x-monotone) 1-intersecting
curves with Ω(n4/3) tangencies based on a famous construction of Erdős (see [14]) of n lines
and n points admitting that many point-line incidences. János Pach [13] conjectured that
requiring every pair of curves to intersect (either at crossing or a tangency point) leads to
significantly less tangencies.

Conjecture 1 ([13]). Let C be a set of n curves such that no three curves in C intersect at
a single point and every pair of curves in C intersect at exactly one point which is either a
crossing or a tangency point. Then the number tangencies among the curves in C is O(n).

Györgyi, Hujter and Kisfaludi-Bak [8] proved Conjecture 1 for the special case where
there are constantly many faces in the arrangement of C that together contain all the
endpoints of the curves. In this paper we show that Conjecture 1 also holds for x-monotone
curves.

Theorem 2. Let C be a set of n x-monotone curves such that no three curves in C intersect
at a single point and every pair of curves in C intersect at exactly one point which is either
a crossing or a tangency point. Then the number tangencies among the curves in C is
O(n).

We prove Theorem 2 by considering two types of tangencies according to whether a
tangency point is between two curves such that their projections on the x-axis are nested
or overlapping. In each case we consider the tangencies graph whose vertices represent the
curves and whose edges represent tangent pairs of curves. In the latter case we show that
it is possible to disregard some ratio of the edges using the pigeonhole principle and the
dual of Dilworth’s Theorem and then order the remaining edges such that there is no long
monotone increasing path with respect to this order. In the first case, we show that after
disregarding some ratio of the edges the remaining edges induce a forest. Due to space
limitations most of the details of the proof are omitted. The interested reader can find
them in [3].

Related Work. It follows from a result of Pach and Sharir [17] that n x-monotone
1-intersecting curves admit O

(
n4/3 (log n)2/3

)
tangencies. Note that this bound almost
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matches the lower bound mentioned above. It also follows from [17] that for bi-infinite x-
monotone 1-intersecting curves the maximum number of tangencies is Θ(n log n). Pálvölgyi
et nos [2] showed that there are O(n) tangencies among families of n 1-intersecting curves
that can be partitioned into two sets such that all the curves within each set are pairwise
disjoint. Variations of this bipartite setting were also studied in [1, 10, 19].

Pach, Rubin and Tardos [15, 16] settled a long-standing conjecture of Richter and
Thomassen [20] concerning the number of crossing points determined by pairwise inter-
secting curves. In particular, they showed that in any set of curves admitting linearly
many tangencies the number of crossing points is superlinear with respect to the number
of tangencies. This implies that for any fixed t every set of n t-intersecting curves ad-
mits o(n2) tangencies. Salazar [22] already pointed that out for such families which are
also pairwise intersecting. Better bounds for families of t-intersecting curves were found
in [5, 10]. Specifically, it follows from [10] that n 1-intersecting curves determine O(n7/4)
tangencies.

There are several other problems in combinatorial geometry that can be phrased in
terms of bounding the number of tangencies between certain curves, see, e.g., [4]. The most
famous of which is the unit distance problem of Erdős [6] which asks for the maximum
number of unit distances among n points in the plane. It is easy to see that this problem
is equivalent to asking for the maximum number of tangencies among n unit circles.

2 Proof of Theorem 2
Let C be a set of n x-monotone curves such that no three curves in C intersect at a single
point and every pair of curves in C intersect at exactly one point which is either a crossing
or a tangency point. By slightly extending the curves if needed, we may assume that
every intersection point of two curves is an interior point of both of them and that all the
endpoints of the curves are distinct.

Let p = (x1, y1) and q = (x2, y2) be two points. We write p <x q if x1 < x2 and we write
p <y q if y1 < y2. We mainly consider the order of points from left to right, so when we
use terms like ‘before’, ‘after’ and ‘between’ they should be understood in this sense. For
a curve c ∈ C we denote by L(c) and R(c) the left and right endpoints of c, respectively. If
p, q ∈ c, then c(p, q) denotes the part of c between these two points. We denote by c(−, p)
(resp., c(p,+)) the part of c between L(c) (resp., R(c)) and p. For another curve c′ ∈ C we
denote by I(c, c′) the intersection point of c and c′. We may also write, e.g., c(c′, q) instead
of c(I(c, c′), q)

Suppose that an x-monotone curve c1 lies above another x-monotone curve c2, that is,
the two curves are non-crossing (but might be touching) and there is no vertical line ` such
that I(c1, `) <y I(c2, `). Assuming the endpoints of c1 and c2 are distinct there are four
possible cases: (1) L(c1) <x L(c2) <x R(c2) <x R(c1); (2) L(c2) <x L(c1) <x R(c1) <x

R(c2); (3) L(c1) <x L(c2) <x R(c1) <x R(c2); and (4) L(c2) <x L(c1) <x R(c2) <x R(c1).
We denote by c2 ≺i c1 the relation that corresponds to case i, for i = 1, 2, 3, 4. It is not
hard to see that each ≺i is a partial order.
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Proposition 3. For every i = 1, 2, 3, 4 there are no three curves c1, c2, c3 ∈ C such that
c1 ≺i c2 ≺i c3.

We say that the tangency point of two touching curves c1, c2 ∈ C is of Type i if c1 ≺i c2.
We will count separately tangency points of Types 1 and 2 and tangency points of Types 3
and 4.

Lemma 4. There are O(n) tangency points of Type 1 or 2.

Proof. Since all the curves in C are pairwise intersecting and x-monotone there is a vertical
line ` that intersects all of them. By slightly shifting ` if needed we may assume that no
two curves intersect ` at the same point. We assume without loss of generality that at least
half of all the tangency points of Types 1 and 2 are to the right of `, for otherwise we may
reflect all the curves about `. We may further assume that at least half of the tangency
points of Types 1 and 2 to the right of ` are of Type 2, for otherwise we may reflect all
the curves about the x-axis. Henceforth, we consider only Type 2 tangency points to the
right of `.

By Proposition 3 a curve cannot touch one curve from above and another curve from
below at Type 2 tangency points. Thus, we may partition the curves into blue curves and
red curves such that at every tangency point a blue curve touches a red curve from below
(we ignore curves that contain no tangency points among the ones that we consider).

Proposition 5. Every pair of blue curves cross each other.

We proceed by marking the rightmost tangency point on every red curve. Clearly, at
most n tangency points are marked. Henceforth, we consider only unmarked tangency
points. Let G be the (bipartite) tangencies graph of the blue and red curves. That is, the
vertices of G correspond to the blue and red curves and its edges correspond to pairs of
touching blue and red curves (recall that we consider only unmarked tangency points of
Type 2 to the right of `). We will show that G is a forest and hence has at most n − 1
edges.

Suppose that G contains a cycle and let C = b0 − r0 − b1 − r1 − . . . − bk − rk − b0 be
a shortest cycle in G, such that bi corresponds to a blue curve and ri corresponds to a red
curve, for every i = 0, 1, . . . , k. We may assume without loss of generality that b1 has the
lowest intersection point with ` among the blue curves in C and that I(b0, `) <y I(b2, `).

Proposition 6. For every i ≥ 1 the curve ri intersects ` above r0 and intersects b0(−, `),
r0(b0,+) and b1(b0,+). See Figure 1 for an illustration.

It follows from Proposition 6 that rk intersects b0 to the left of ` and therefore (b0, rk)
cannot be an edge in G. Thus G is a forest and has at most n − 1 edges. This implies
that there are at most 2n− 1 Type 2 tangency points to the right of ` and at most 8n− 4
tangency points of Types 1 and 2.

Lemma 7. There are O(n) tangency points of Type 3 or 4.
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Figure 1: Illustrations for the statement of Proposition 6: ri intersects ` above r0 and
intersects b0(−, `), r0(b0,+) and b1(b0,+).

Proof. As in the proof of Lemma 4, we may assume that there is a vertical line ` that
intersects all the curves at distinct points and it is enough to consider only Type 4 tangency
points to the right of `.

By Proposition 3 a curve cannot touch one curve from above and another curve from
below at Type 4 tangency points. Thus, we may partition the curves into blue curves and
red curves such that at every tangency point a blue curve touches a red curve from below
(we ignore curves that contain no tangency points among the ones that we consider).

Clearly, there are no Type 4 tangencies among the blue curves, however, there might be
tangencies of other types among them. Next we wish to obtain a subset of the blue curves
such that every pair of them are crossing and they together contain a percentage of the
tangency points that we consider. It follows from Proposition 3 that the largest chain in
the partially ordered set of the blue curves with respect to ≺1 is of length two. Therefore,
by Mirsky’s Theorem (the dual of Dilworth’s Theorem) the blue curves can be partitioned
into two antichains with respect to ≺1. The blue curves of one of these antichains contain
at least half of the tangency points that we consider. By continuing with this set of blue
curves and applying the same argument twice more with respect to ≺2 and ≺3 we obtain
a set of pairwise crossing blue curves that together contain at least 1/8 of the tangency
points of Type 4 to the right of `. Henceforth we consider these blue curves and the red
curves that touch at least one of them at a Type 4 tangency point to the right of `.

Let G = (B ∪ R,E) be the (bipartite) tangencies graph of these blue and red curves.
That is, B corresponds to the blue curves, R corresponds to the red curves and E corre-
sponds to pairs of touching blue and red curves (at Type 4 tangency points to the right of
`). We order the edges of G according to the order of their corresponding tangency points
from left to right. We will show that G has linearly many edges using the following fact,
attributed to Rödl [21] in [7].

Proposition 8. Let G = (V,E) be a graph and let < be a total order of its edges. Let k
be an integer and suppose that G does not contain a monotone increasing path of k edges,
that is, a path e1 − e2 − . . .− ek such that e1 < e2 < . . . < ek. Then |E| <

(
k
2

)
|V |.
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Figure 2: n x-monotone pairwise intersecting 1-intersecting curves might determine 3n− 4
tangencies.

Recall that we order the edges of G according to the order of their corresponding
tangency points from left to right. The lemma follows from Proposition 8 and the next
claim.

Proposition 9. G does not contain a monotone increasing path of 7 edges starting at B.

We conclude from Propositions 8 and 9 that G has at most 28n edges. This in turn
implies that there are at most 8 · 2 · 2 · 28n = 896n tangency points of Types 3 and 4.

By Lemmata 4 and 7 there are at most 904n− 4 tangency points among the curves in
C. This concludes the proof of Theorem 2.

3 Discussion
We have shown that n x-monotone pairwise intersecting 1-intersecting curves determine
O(n) tangencies. The constant hiding in the big-O notation is rather large, since, for
simplicity, we did not make much of an effort to get a smaller constant. In particular,
our upper bound can be improved by considering more cases. It would be interesting to
determine the exact maximum number of tangencies among a set of n x-monotone curves
each two of which intersect at exactly one point. The best lower bound we came up with
is 3n− 4, see Figure 2.
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