Antarctic regolith as prospective substrate for cultivation of plants in space analog habitat greenhouses: Seed germination and early growth study of broccoli in aqueous and acidic dilutions

Vol.14,No.2(2024)

Abstract

Food prouction for the needs of space mission crews has posed one of the leading concerns of recent space research. One of the arguably best terrestrial analogs of extraterrestrial habitats are the polar research stations, such as those found in Antarctica. Plants cultivation, offering a valulable source of fresh food, have been a prominent research topic not only for their significance for space analog experiments, but also for the needs of the scientists working at these stations. One of the approaches is the In Situ Resource Utilization (ISRU), which in this case can be adopted by cultivating crops directly in    the local soil. Our study aims to evaluate early growth phase and photosynthetic performance of Brassica oleracea var. botrytis italica in Antarctic regolith collected at foothill of the Berry Hill mesa, James Ross Island, Antarctica. Fine grained regolith consisting primarily of hyaloclastic breccias was collected and transported to the laboratories in the Czech Republic. For germination and growth of the experimental plants, leachates were prepared from the regolith using deionized water and 0.11 M acetic acid. Individuals of B. oleracea were cultivated from seeds in a Murashige-Skoog (MS) liquid solution under controlled conditions (T = 21°C, PAR = 120 µmol m-2 s-1) either without addition of regolith leachates (control) or with addition of leachates done by using demineralized water and weak acetic acid. Growth rate, and photosynthetic activity of the experimental plants were measured by chlorophyll fluorescence in  1 day intervals for 21 days. We measured (1) FV/FM (potential yield of photochemical photosynthetic processes), and (2) ФPSII (effective quantum yield of photosystem II). It was showed   that acidic leachate either fully inhibited germination or had a strong inhibitory effect on B. oleracea. Water leachates added to the MS medium had moderately strong inhibitory effects on FV/FM and ФPSII. The experimental plants showed decreased but still satisfactory growth rate. The results are promising for follow-up studies aimed to understand and expand the experimental plant growth in Antarctic regolith and its potential association with ISRU purposes.


Keywords:
photosynthesis; chlorophyll fluorescence; Brassica oleracea; space greenhouse analogue; space missions; agriculture; ISRU
References

Bamsey, M., Zabel, P., Zeidler, C., Gyimesi, D., Schubert, D., Kohlberg, E., Mengedoht, D., Rae, J. and Graham, T. (2015): Review of Antarctic greenhouses and plant production facilities: A historical account of food plants on the ice. 45th International Conference on Environmental Systems, 12-16 July 2015, Bellevue, Washington, 36 p.

Barták, M., Hájek, J., Orekhova, A., Villagra, J., Marín, C., Palfner, G. and Casanova-Katny, A. (2021): Inhibition of primary photosynthesis in desiccating Antarctic lichens differing in their photobionts, thallus morphology, and spectral properties. Microorganisms, 9: 818. doi: 10.3390/microorganisms9040818

Campiotti, C.A., Balducchi, R., Dondi, F., Alonzo, G., Catanese, V., Incrocci, L. and Bibbiani, C. (2008): The PULSA (Plant-Based Unit For Life Support in Antarctica): A sustainable plant food production technology for remote and isolated environments. ISHS Acta Horticulturae 801: International Symposium on High Technology for Greenhouse System Management: Greensys2007. Acta Horticulturae, 801: 417-424. doi: 10.17660/ActaHortic. 2008.801.44

Caporale, A. G., Amato, M., Duri, L. G., Bochicchio, R., De Pascale, S., Simeone, G. D. R., Palladino, M., Pannico, A., Rao, M. A., Rouphael, Y. and Adamo, P. (2022): Can Lunar and Martian soils support food plant production? Effects of horse/swine monogastric manure fertilisation on regolith simulants enzymatic activity, nutrient bioavailability, and lettuce growth. Plants, 11(23): 3345. doi: 10.3390/plants11233345

Caporale, A. G., Palladino, M., De Pascale, S., Duri, L. G., Rouphael, Y. and Adamo, P. (2023): How to make the Lunar and Martian soils suitable for food production - Assessing the changes after manure addition and implications for plant growth. Journal of Environmental Management, 325(Pt A): 116455. doi: 10.1016/j.jenvman.2022.116455

Coufalík, P., Stavrakakis, H-A. and Argyrou, D. (2024): Chemical analysis of Antarctic regolith and lunar regolith simulant as prospective substrates for experiments with plants. Czech Polar Reports, 14(2): 241-254. doi: 10.5817/CPR2024-2-15

Daher, M., Fernandes-Filho, E., Francelino, M., Costa, L. and Schaefer, C. (2022): Geochemistry of semi-arid Cryosols on volcanic and sedimentary materials from James Ross Island, Antarctica. Geoderma Regional, 28: e00490. doi: 10.1016/j.geodrs.2022.e00490

Ding, J., Xu, Y., Tan, J., Zhang, H., Xiong, X., Mei, C., Li, M. and Xie, G. (2024): How to make lunar soil suitable for cultivation? - A review. The Science of the Total Environment, 948: 174603. https://doi.org/10.1016/j.scitotenv.2024.174603

Dreschel, T. W., Knott, W. M., Prince, R. P., Sager, J. C. and Wheeler, R. M. (2018): From project mercury to the breadboard project. Proceedings of the 48th International Conference on Environmental Systems, Boston, MA.

Duri, L., Caporale, A., Rouphael, Y., Vingiani, S., Palladino, M., De Pascale, S. and Adamo, P. (2022): The potential for lunar and martian regolith simulants to sustain plant growth: A multidisciplinary overview. Frontiers in Astronomy and Space Sciences, 8: 747821. doi: 10.3389/fspas.2021.747821

Eichler, A., Hadland, N., Pickett, D. E., Masaitis, D., Handy, D. C., Perez, A., Batcheldor, D., Wheeler, B. A. and Palmer, A. G. (2021): Challenging the agricultural viability of martian regolith simulants. Icarus, 354: 114022.

Fackrell, L. E., Schroeder, P. A., Thompson, A., Stockstill-Cahill, K. and Hibbitts, C. A. (2021): Development of martian regolith and bedrock simulants: Potential and limitations of martian regolith as an in-situ resource. Icarus, 354: 114055.

Fahrion, J., Fink, C., Zabel, P., Schubert, D., Mysara, M., Van Houdt, R., Eikmanns, B., Beblo-Vranesevic, K. and Rettberg, P. (2020): Microbial monitoring in the EDEN ISS greenhouse, a mobile test facility in Antarctica. Frontiers in Microbiology, 11: 525. doi: 10.3389/fmicb.2020.00525

Fu, Y., Li, L., Xie, B., Dong, C., Wang, M., Jia, B., Shao, L., Dong, Y., Deng, S., Liu, H., Liu, G., Liu, B., Hu, D. and Liu, H. (2016): How to establish a bioregenerative life support system for long-term crewed missions to the Moon or Mars. Astrobiology, 16(12): 925-936. doi: 10.1089/ast.2016.1477

Gitelson, I. I., Lisovsky, G. M. and MacElroy, R. D. (2003): Manmade closed ecological systems. Earth space institute book series. New York, NY: Taylor & Francis, 416 p.

Gonçalves, R., Wamelink, G. W. W., van der Putten, P. and Evers, J. B. (2024): Intercropping on Mars: A promising system to optimise fresh food production in future martian colonies. PloS One, 19(5): e0302149. doi: 10.1371/journal.pone.0302149

Hatch, T. R., McQuillen, J. B., Wasserman, M. and Weislogel, M. M. (2022): Plant water management in microgravity. Proceedings, 51st International Conference on Environmental Systems, 10-14 July 2022, St. Paul, Minnesota, USA, 12 p.

Hrbáček, F., Láska, K., Nývlt, D., Engel, Z. and Oliva, M. (2016): Active layer thickness variability on James Ross island, eastern Antarctic peninsula. In: F. Gunther, A. Morgenstern (Eds.): International Conference on Permafrost, Bibliothek Wissenschaftspark Albert Einstein, Potsdam.

Kasiviswanathan, P., Swanner, E. D., Halverson, L. J. and Vijayapalani, P. (2022): Farming on Mars: Treatment of basaltic regolith soil and briny water simulants sustains plant growth. PLoS One, 17(8): e0272209. doi: 10.1371/journal.pone.0272209

Kavan, J., Ondruch, J., Nývlt, D., Hrbáček, F., Carrivick, J. L. and Láska, K. (2017): Seasonal hydrological and suspended sediment transport dynamics in proglacial streams, James Ross Island, Antarctica. Geografiska Annnaler Series A – Physical Geography, 99(1): 38-55. doi: 10.1080/04353676.2016.1257914

Láska, K., Barták, M., Hájek, J., Prošek, P. and Bohuslavová, O. (2011): Climatic and ecological characteristics of deglaciated area of James Ross island, Antarctica, with a special respect to vegetation cover. Czech Polar Reports, 1: 49-62. doi: 10.5817/CPR2011-1-5

Lichtenthaler, H. K., Buschmann, C. and Knapp, M. (2005): How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio R Fd of leaves with the PAM fluorometer. Photosynthetica, 43(3).

Lorenz, C., Melle, B.H., Arena, C. (2024): Where is the plant-space research going? An overview on the last two decades through bibliometric network multi-analysis. Acta Astronautica, 221: 26-33.

Maiwald, V. A., Kyunghwan, K., Vrakking, V. and Zeidler, C. (2023): From Antarctic prototype to ground test demonstrator for a lunar greenhouse. Acta Astronautica, 212: 246-260. doi: 10.1016/j.actaastro.2023.08.012

Massa, G. D., Wheeler, R. M., Morrow, R. C. and Levine, H. G. (2016): Growth chambers on the international space station for large plants. Acta Horticulturae, 1134: 215-222. doi: 10.17660/ActaHortic.2016.1134.29

Nitta, K. (2005): The Mini-Earth facility and present status of habitation experiment program. Advances in Space Research (the official journal of the Committee on Space Research- COSPAR), 35(9): 1531-1538. doi: 10.1016/j.asr.2005.03.100

Panova, G. G., Teplyakov, A. V., Novak, A. B., Levinskikh, M. A., Udalova, O. R., Mirskaya, G. V., Khomyakov, Y. V., Shved, D. M., Ilyin, E. A., Kuleshova, T. E., Kanash, E. V. and Chesnokov, Y. V. (2023): Growth and Development of leaf vegetable crops under conditions of the phytotechnical complex in Antarctica. Agronomy (Basel), 13(12): 3038. doi: 10.3390/agronomy13123038

Poulet, L., Zeidler, C., Bunchek, J., Zabel, P., Vrakking, V., Schubert, D., Massa, G. and Wheeler, R. (2021): Crew time in a space greenhouse using data from analog missions and Veggie. Life Sciences in Space Research, 31: 101-112. doi: 10.1016/j.lssr.2021.08.002

Przemieniecki, S. W., Kalisz, B., Katzer, J., Wamelink, G. W. W., Kosewska, O., Kosewska, A., Sowiński, P. and Mastalerz, J. (2024): Effect of vermicompost on rhizobiome and the growth of wheat on Martian regolith simulant. The Science of the Total Environment, 935: 173299. doi: 10.1016/j.scitotenv.2024.173299

Qin, J., Jiang, X., Qin, J., Zhao, H., Dai, M., Liu, H. and Chen, X. (2023): Effects of lead pollution on photosynthetic characteristics and chlorophyll fluorescence parameters of different populations of Miscanthus floridulus. Processes, 11: 1562. doi: 10.3390/pr11051562

Rickard, Ch. P., Bode, R. F. (2021): Sporobolus airoides as a Pioneer Plant for Lunar Regolith. 17th Earth and Space Conference, Proceedings, pp. 211–221.

Roháček, K. (2002): Chlorophyll fluorescence parameters: The definitions, photosynthetic meaning, nad mutual relationships. Photosynthetica, 40: 13-29.

Schubert, D., Bamsey, M., Zabel, P., Zeidler, C. and Vrakking, V. (2018): Status of the EDEN ISS Greenhouse after on-site installation in Antarctica. 48th International Conference on Environmental Systems 8-12 July 2018, Albuquerque, New Mexico. https://elib.dlr.de/121867/ 1/ICES-2018-140.pdf

Terauds, A., Lee, J. (2016): Antarctic biogeography revisited: Updating the Antarctic conservation biogeographic regions. Diversity and Distributions, 22: 836-840.

van Lipzig, N. P. M., King, J. C. and Lachlan-Cope, T. A. (2004): Precipitation, sublimation, and snow drift in the Antarctic peninsula region from a regional atmospheric model. Journal of Geophysical Research: Atmospheres, 109: D24106. doi: 10.1029/2004JD004701

Wang, M., Chen, D. and Wanlin, G. (2019): Evaluation of the growth, photosynthetic characteristics, antioxidant capacity, biomass yield and quality of tomato using aeroponics, hydroponics and porous tube-vermiculite systems in bio-regenerative life support systems. Life Sciences in Space Research, 22: 68-75. doi: 10.1016/j.lssr.2019.07.008

Wheeler, R. M. (2017): Agriculture for space: People and places paving the way. Open Agric, 2: 1401. doi: 10.1515/opag-2017-0002

Yao, Z.Y., Feng, J. and Liu, H. (2021): Bioweathering improvement of lunar soil simulant improves the cultivated wheat's seedling length. Acta Astronautica, 193: 1-8. doi: 10.1016/ j.actaastro.2021.12.055.

Zabel, P., Zeidler, C., Vrakking, V., Dorn, M. and Schubert, D. (2020): Biomass production of the EDEN ISS Space Greenhouse in Antarctica during the 2018 experiment phase. Frontiers in Plant Science, 11: 656. doi: 10.3389/fpls.2020.00656

Zabel, P., Bamsey, M., Zeidler, C., Vrakking, V., Johannes, B., Rettberg, P., Schubert, D., Romberg, O., Imhof, B., Davenport, R., Hoheneder, W., Waclavicek, R., Gilbert, C., Hogle, M., Battistelli, A., Stefanoni, W., Moscatello, S., Proietti, S., Santi, G., Nazzaro, F., Fratianni, F., Coppola, R., Dixon, M.A., Stasiak, M., Kohlberg, E., Mengedoht, D., Bucchieri, L., Mazzoleni, E., Fetter, V., Hummel, T., Boscheri, G., Massobrio, F., Lamantea, M., Lobascio, C., Petrini, A., Adami, M., Bonzano, G., Fiore, L., Dueck, T.A., Stanghellini, C., Bochenek, G., Gilley, A., McKeon-Bennett, M.M., Stutte, G.W., Larkin, T., Moane, S., Murray, P., Downey, P.J., Fortezza, R. and Ceriello, A. (2015): Introducing EDEN ISS - A European project on advancing plant cultivation technologies and operations. doi: 10.5281/ZENODO.34391

Zeidler, C., Zabel, P., Vrakking, V., Dorn, M., Bamsey, M., Schubert, D., Ceriello, A., Fortezza, R., De Simone, D., Stanghellini, C., Kempkes, F., Meinen, E., Mencarelli, A., Swinkels, G. J., Paul, A. L. and Ferl, R. J. (2019): The plant health monitoring system of the EDEN ISS space greenhouse in Antarctica during the 2018 experiment phase. Frontiers in Plant Science, 10: 1457. doi: 10.3389/fpls.2019.01457

Zeidler, C., Woeckner, G., Schöning, J., Vrakking, V., Zabel, P., Dorn, M., Schubert, D., Steckelberg, B. and Stakemann, J. (2021): Crew time and workload in the EDEN ISS greenhouse in Antarctica. Life Sciences in Space Research, 31: 131-149. doi: 10.1016/j.lssr. 2021.06.003

Zhao, Y., Luo, R., Zhang, H., Yuan, L., Fang, X., Tong, X., Qian, Y., Zhou, Z., Yang, Y., Zeng, X., Li, J., Xu, X., Xie, Q., Gong, B. and Guo, J. (2024): The effects of simulated Martian regolith on Arabidopsis growth, circadian rhythms and rhizosphere microbiota. Plant and Soil, doi: 10.1007/s11104-024-06970-7

Zvěřina, O., Láska, K., Cervenka, R., Kuta, J., Coufalík, P. and Komárek, J. (2014): Analysis of mercury and other heavy metals accumulated in lichen Usnea antarctica from James Ross Island, Antarctica. Environmental Monitoring and Assessment, 186(12): 9089-9100. doi: 10.1007/s10661-014-4068-z

Web sources / Other sources

[1] Luke Jerram experiments: https://blog.hmns.org/2020/07/science-in-action-Martian-farming/

[2] EVONIK: https://corporate.evonik.cn/en/growing-vegetables-in-permanent-ice-568.html

Metrics

0

Crossref logo

0

0

web of science logo


8

Views

5

PDF views