Responses of primary photosynthetic processes to repetitive rehydration differ in two representatives of Svalbard moss flora
Vol.12,No.1(2022)
Svalbard; dehydration; rehydration; chlorophyll fluorescence; Sanionia uncinata; Racomitrium lanuginosum
Alpert, P. (2000): The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecology, 151: 5-17. doi: 10.1023/A:1026513800380
Bartošková, H., Nauš, J. and Výkruta, M. (1999): The arrangement of chloroplasts in cells influences the reabsorption of chlorophyll fluorescence emission. The effect of desiccation on the chlorophyll fluorescence spectra of Rhizomnium punctatum leaves. Photosynthesis Research, 62: 251-260. doi: 10.1023/A:1006333411167
Bhatt, U., Singh, H., Kumar, D. and Soni, V. (2020): Rehydration quickly assembles photosynthetic complexes in desiccation tolerant Riccia gangetica. Biomedical Journal of Scientific & Technical Research, 30(1): 23034-23037. doi: 10.26717/BJSTR.2020.30.004891
Bramley-Alves, J., Wanek, W., French, K. and Robinson, S. A. (2015): Moss δ13C: An accurate proxy for past water environments in polar regions. Global Change Biology, 21: 2454-2464. doi: 10.1111/gcb.12848
Csintalan, Z., Proctor, M. C. F. and Tuba, Z. (1999): Chlorophyll fluorescence during drying and rehydration in the mosses Rhytidiadelphus loreus (Hedw.) Warnst., Anomodon viticulosus (Hedw.) Hook. and Tayl. and Grimmia pulvinata (Hedw.) Sm. Annals of Botany, 84: 235-244. doi: 10.1006/anbo.1999.0919
Davey, M. (1997): Effects of continuous and repeated dehydration on carbon fixation by bryophytes from the maritime Antarctic. Oecologia, 110: 25-31. doi: 10.1007/s004420050129
Fernández-Marín, B., Míguez, F., Becerril, J. M. and García-Plazaola, J. I. (2011): Dehydration-mediated activation of the xanthophyll cycle in darkness: Is it related to desiccation tolerance? Planta, 234: 579-588.
Flexas, J., Escalona, J. M., Evain, S., Gulías, J., Moya, I., Osmond, C. B. and Medrano, H. (2002): Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiologia Plantarum, 114: 231-240.
Giudici, G. N. M., Hájek, J., Barták, M. and Kubešová, S. (2018): Comparative research of photosynthetic processes in selected poikilohydric organisms from Mediterranean and Central European alpine habitats. Czech Polar Reports, 8: 286-298.
Green, T.G.A., Sancho, L.G. and Pintado, A. (2011): Ecophysiology of desiccation/rehydration cycles in mosses and lichens. In: U. Lüttge, E. Beck, D. Bartels (eds.): Plant Desiccation Tolerance. Ecological Studies, vol 215. Springer, Berlin, Heidelberg. pp 89–120. doi: 10.1007/978-3-642-19106-0_6
Greenwood, J. L., Stark, L. R., and Chiquoine, L. P. (2019): Effects of rate of drying, life history phase, and ecotype on the ability of the moss Bryum Argenteum to survive desiccation events and the influence on conservation and selection of material for restoration. Frontiers in Ecology and Evolution, 7: 388. doi: 10.3389/fevo.2019.00388
Haitz, M., Lichtenthaler, H. K. (1988): The measurement of Rfd-values as plant vitality indices with the portable field chlorophyll fluorometer and the PAM-Fluorometer. In: H. K. Lichtenthaler (ed): Applications of Chlorophyll Fluorescence in Photosynthesis Research, Stress Physiology, Hydrobiology and Remote Sensing. Springer, Dordrecht. doi: 10.1007/978-94-009- 2823-7_31.
Heber, U., Azarkovich, M. and Shuvalov, V. (2007): Activation of mechanisms of photoprotection by desiccation and by light: Poikilohydric photoautotrophs. Journal of Experimental Botany, 58: 2745-2759. doi: 10.1093/jxb/erm139
Hinshiri, H. M., Proctor, M. C. F. (1971): The effect of desiccation on subsequent assimilation and respiration of the bryophytes Anomodon viticulosus and Porella platyphylla. New Phytologist, 70: 527-538.
Hu, R., Xiao, L., Bao, F., Li, X. and He, Y. (2016): Dehydration-responsive features of Atrichum undulatum. Journal of Plant Research, 129: 945-954. doi: 10.1007/s10265-016-0836-x
Li, J., Li, X. and Chen, C. (2014): Degradation and reorganization of thylakoid protein complexes of Bryum argenteum in response to dehydration and rehydration. Bryologist, 117: 110-118.
Lichtenthaler, H. K., Buschmann, C. and Knapp, M. (2005): How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica, 43: 379-393.
Lichtenthaler, H. K., Buschmann, C., Rinderle, U. and Schmuck, G. (1986): Application of chlorophyll fluorescence in ecophysiology. Radiation and Environmental Biophysysics, 25: 297-308. doi: 10.1007/BF01214643
Morales-Sánchez, J. A. M., Mark, K., João Souza, J. P. S. and Niinemets, U. (2022): Desiccation–rehydration measurements in bryophytes: Current status and future insights. Journal of Experimental Botany, 73(13): 4338-4361. doi: 10.1093/jxb/erac172
Nabe, H., Funabiki, R., Kashino, Y., Koike, H. and Satoh, K. (2007): Responses to desiccation stress in bryophytes and an important role of dithiothreitol – Insensitive non-photochemical quenching against photoinhibition in dehydrated states. Plant & Cell Physiology, 48(11): 1548-1557. doi: 10.1093/pcp/pcm124
Nayaka, S., Saxena, P. (2014): Physiological responses and ecological success of lichen Stereocaulon foliolosum and moss Racomitrium subsecundum growing in same habitat in Himalaya. Indian Journal of Fundamental and Applied Life Sciences, 4: 167-179.
Oliver, M. J., Hudgeons, J., Dowd, S. E. and Payton, P. R. (2009): A combined subtractive suppression hybridization and expression profiling strategy to identify novel desiccation response transcripts from Tortula ruralis gametophytes. Physiologia Plantarum, 136: 437-460. doi: 10.1111/j.1399-3054.2009.01245.x
Orekhova, A., Barták, M., Hájek, J. and Morkusová, J. (2022): Species-specific responses of spectral reflectance and the photosynthetic characteristics in two selected Antarctic mosses to thallus desiccation. Acta Physiologiae Plantarum, 44: 6. doi: 10.1007/s11738-021-03339-6
Pizarro, M., Contreras, R. A., Köhler, H. and Zúńiga, G. E. (2019): Desiccation tolerance in the Antarctic moss Sanionia uncinata. Biological Research, 52: 46. doi: 10.1186/s40659-019-0251-6
Pressel, S., Duckett, J. G. (2010): Cytological insights into the desiccation biology of a model system: Moss protonemata. New Phytologist, 185: 944-963. doi: 10.1111/j.1469-8137.2009. 03148.x
Proctor, M. C. F., Ligrone, R. and Duckett, J. G. (2007): Desiccation tolerance in the moss Polytrichum formosum: Physiological and fine-structural changes during desiccation and recovery. Annals of Botany, 99: 1243. doi: 10.1093/aob/mcm098
Proctor, M. C., Smirnoff, N. (2000): Rapid recovery of photosystems on rewetting desiccation-tolerant mosses: Chlorophyll fluorescence and inhibitor experiments. Journal of Experimental Botany, 51(351): 1695-1704. doi: 10.1093/jexbot/51.351.1695
Robinson, S. A., Klekociuk, A. R., King, D. H., Rojas, M. P., Zúñiga, G. E. and Bergstrom, D. M. (2020): The 2019/2020 summer of Antarctic heatwaves. Global Change Biology, 26(6): 3178-3180. doi: doi: 10.1111/gcb.15083
Stark, L. R., Greenwood, J. L., Brinda, J. C. and Oliver, M. J. (2013): The desert moss Pterygoneurum lamellatum (Pottiaceae) exhibits an inducible ecological strategy of desiccation tolerance: Effects of rate of drying on shoot damage and regeneration. American Journal of Botany, 100(8): 1522-1531. doi: 10.3732/ajb.1200648
Stoklasa-Wojtasz, A., Rzepka, A. and Rit, G. (2012): Responses of mosses species on environment stress factors. In: M. T. Grzesiak, A. Rzepka, T. Hura, S. Grzesiak (eds.): Plant functioning under environmental stress. The F. Górski Institute of Plant Physiology. Polish Academy of Science, Cracow, pp. 69–83.
Tuba, Z., Csintalan, Z. and Proctor, M. (1996): Photosynthetic responses of a moss, Tortula ruralis, ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance: A baseline study at present-day CO2 concentration. New Phytologist, 133(2): 353–361. doi: 10.1111/j.1469-8137. 1996.tb01902.x
Uchida, M., Muraoka, H., Nakatsubo, T., Bekku, Y., Ueno, T., Kanda, H. and Koizumi, H. (2002): Net photosynthesis, respiration, and production of the moss Sanionia uncinata on a Glacier Foreland in the high Arctic, Ny-Ålesund, Svalbard. Arctic, Antarctic, and Alpine Research, 34: 287-292.
Virtanen, R.J., Lundberg, P.A., Moen, J. and Oksanen, L. (1997): Topographic and altitudinal patterns in plant communities on European Arctic islands. Polar Biology, 17: 95-113.
Wawrzyniak, T., Osuch, M. (2020): A 40-year High Arctic climatological dataset of the Polish Polar Station Hornsund (SW Spitsbergen, Svalbard). Earth System Science Data, 12: 805-815. doi: 10.5194/essd-12-805-2020
Wood, A. J. (2007): The nature and distribution of vegetative desiccation-tolerance in hornworts, liverworts and mosses. Bryologist, 110: 163-177. doi: 10.1639/0007-2745(2007)110[163:IENF IB]2.0.CO;2
Zhang, X. (2016): Effects of drought stress and rehydration on chlorophyll fluorescence characteristics of Erythrodontium julaceum (Schwaegr.) par. In areas of puding karst rock desertification. Bangladesh Journal of Botany, 45(4): 911-917.
Zhang, J., Zhang, Y. M., Downing, A., Wu, N. and Zhang, B. C. (2011): Photosynthetic and cytological recovery on remoistening Syntrichia caninervis Mitt., a desiccation-tolerant moss from Northwestern China. Photosynthetica, 49(1): 13-20. doi: 10.1007/s11099-011-0002-6
Web sources / Other sources
[1] IPCC: The Ocean and Cryosphere in a Changing Climate, available at: https://www.ipcc.ch/srocc/home/ (last access: 1 April 2020), 2019.
[2] NOAA: National Centers for Environmental information, Climate at a Glance, Global Time Series, available at: https://www.ncdc.noaa.gov/cag/, last access: 27 February 2020.
[3] Map of Svalbard https://toposvalbard.npolar.no/

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2022 Czech Polar Reports