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Abstract 
The effects of ongoing climate change have caused a poleward shift in the distribution of 
species due to the rapidly rising water temperatures. This calls for an immediate need to 
assess and document the extent of climate change-driven animal migrations occurring in 
the Arctic waters. However, the extreme climatic conditions and the remoteness of the 
region makes biomonitoring tedious in the Arctic ecosystem. The present study puts 
forward a deep learning-based analysis of a large underwater video dataset that was 
captured from the Arctic region. The dataset was acquired using underwater cameras 
mounted on custom-made stainless-steel frames. The video footages were collected over 
a period of 26 days from the Kongsfjorden- Krossfjorden twin Arctic fjords in Svalbard, 
Norway. The collected data sets were used to train YOLO-based object detection 
framework (You Only Look Once) for an automated detection of the organisms. The 
YOLO model employed for the study was found to be very efficient in classifying the 
underwater images captured from the region. The object detection framework could 
detect images of Comb jelly, Echinoderm, Sea Anemone and Ulke (Shorthorn sculpin) 
from the underwater images. The model attained a superior value of Mean Average 
Precision (mAP), precision, and recall of 99.5%, 99.2%, and 97.4%, respectively.  
 

 
Key words: Arctic, biodiversity, biomonitoring, deep learning, YOLO, climate change, 
Artificial Intelligence 
 

 
DOI: 10.5817/CPR2023-2-15 
 
 
Introduction     
 
     The circumpolar Arctic ecosystem cov-
ers nearly 13.8 million km2 land and       
14 million km2 ocean and is characterised 
by the severity of the climate and its var-
iability in space and time. The Arctic eco-
system, as a whole, tends to experience 

considerable stress from numerous sourc-
es, namely pollution, habitat fragmenta-
tion, melting of ice and glaciers owing to 
climate change, over-exploitation of living 
resources, and introduction of invasive spe-
cies (Johnson 2010, Lacoursière-Roussel 
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et al. 2018). The Arctic, as a region, shows 
the impacts of climate change almost two 
and half times faster than the rest of       
the globe and hence considered as an ear-
ly warning system (Hoegh-Guldberg and 
Bruno 2010). 
     The Arctic region encompasses a u-
nique and relatively pristine environment 
that harbours unique flora and fauna. How-
ever, the studies carried over the recent 
decades show that the region is invaded 
intensively by new species and many na-
tive species are moving towards extinction 
(e.g. Brand and Fischer 2015). Marine ecto-
therms that thrive in latitudinal ranges 
based on their thermal tolerance, are re-
ported to diminish at the equatorward 
boundaries and swell at the polar boun-
daries owing to global warming (Fossheim 
et al. 2015). The magnitude as well as the 
nature of these impacts rely on the adap-
tive capability and sensitivity of the af-
fected species and this varies for different 
habitats and species.  
     The increased warming in the Arctic 
has resulted in a decrease in the thickness 
and coverage of the sea ice, and increased 
the availability of light thus enhancing the 
population of pelagic primary producers in 
the Arctic waters and that in turn favours 
the visual predators (Vinnikov et al. 1999, 
Arrigo et al. 2008, Ardyna et al. 2014, 
Varpe et al. 2015, Kahru et al. 2016, 
Isaksen et al. 2022, Gordó-Vilaseca et al. 
2023). This has in turn led to the poleward 
expansion of fast-swimming fishes thereby 
enhancing the pelagic production. On the 
other hand, the species at low trophic lev-
els and those with a narrow range of toler-
ance and diet preferences tend to respond 
adversely to climate warming because of 
increased predation and low diet flexibility 
(Mueter et al. 2013, Frainer et al. 2017). 
Therefore, it is crucial to monitor the re-
sponse of biological communities to cli-
mate change considering its ecological and 
economic importance in an already sus-
ceptible area (Layton et al. 2021).  

     Despite several efforts to monitor and 
document the Arctic biodiversity trends 
and issues, information is currently insuf-
ficient and available only in piecemeal 
fashion and on an irregular basis (Laidre et 
al. 2008). The microbial community, phyto-
planktons, zooplanktons, benthos, inverte-
brates, and vertebrates are some of the pri-
mary groupings of Arctic marine biodiver-
sity, and there are significant knowledge 
gaps regarding their status and general 
trends.  
     However, monitoring the biodiversity, 
community structure and its dynamics in 
Arctic marine ecosystems remains chal-
lenging, owing to its vastness, remoteness 
and extreme conditions. In addition, the 
conventional biomonitoring methods are 
often invasive and resource-intensive. Con-
ventional methods, commonly employed 
for biomonitoring surveys in the marine 
ecosystem like benthic grabs, trawl nets, 
box corers, seine nets, diver surveys have 
several implications. These methods are 
predominantly capture-based, can be un-
suitable to certain habitats or locations, 
spatially restrictive, and expensive. They 
cause disturbances and destruction of habi-
tats (Bicknell et al. 2016). Further, tech-
niques such as Baited Remote Underwa-
ter Video Stations (BRUVS), Underwater 
Visual Census (UVCs) and molecular tech-
niques are time-consuming, labour and 
cost-intensive (Keith et al. 2015). These 
approaches seldom fare well for elusive, 
low-density, highly-mobile fauna like fish-
es, sharks and rays (Boussarie et al. 2018). 
In addition, difficulty to detect small, cryp-
tic or elusive species, makes the estimation 
of entire communities more or less impos-
sible (Deiner et al. 2017). It is often diffi-
cult and tedious to detect and document 
the presence of species that occur in low 
numbers or are elusive, considering the 
vast expanse of the Arctic region and the 
interplay between the terrestrial, fresh-
water and marine ecosystems. The Arctic 
Biodiversity Trends Report (Kurvits et al. 
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2010) emphasises the difficulties encoun-
tered in the biomonitoring studies as most 
of the Arctic countries lack an internal 
long-term biomonitoring program. Moreo-
ver the data tends to be inconsistent across 
the circumpolar region. The Inari Declara-
tion of The Arctic Council (2002, [1]) rec-
ognises the importance of enhanced and 
elaborate biodiversity monitoring at the 
circumpolar level in detecting the impacts 
of global changes on biodiversity and to 
enable the Arctic communities to effec-
tively respond and adapt to the changes.  
     Advanced technology equipped with 
Artificial Intelligence (AI) using deep 
learning methods facilitates the recogni-
tion of a diverse range of species, belong-
ing to different habitats, and hence a prom-
ising and effective tool in biomonitoring 
studies. Video-based species detection ap-
proach may help in easy identification of 
the species, its taxonomic classification 
and documentation without harming the 
ecosystem, its components and function-
ing. Camera imagery has emerged as a po-
tent tool in biomonitoring studies at all 
scales, from individuals to populations  
and communities up to entire ecosystems 
(Bicknell et al. 2016). The relative ease of 
handling and ever decreasing cost of cam-
eras enables them to be employed in ap-
plied and theoretical research, behavioural 
studies, species interactions, their adapta-

tions and responses, community assem-
blages, ecosystem functioning and resil-
ience.  
     Since several decades, camera traps 
have been widely used in terrestrial eco-
systems to assess the abundance, species 
diversity, behavioural studies and docu-
mentation of rare species (Burton et al. 
2015). The concept has been, however, 
developed for marine ecosystems very 
recently. The production of quality, high-
definition waterproof cameras marks the 
development of imagery as a potent tool 
for marine biodiversity studies. The af-
fordability, reduced size, improved under-
water housing along with extended power 
back up and storage capacity will un-
doubtedly add up to the application of 
camera imagery in every habitat, including 
the areas that were previously unfeasible 
or inaccessible.  
     The present study is an AI-based analy-
sis of a large underwater video dataset that 
was captured using underwater cameras 
from the Arctic region. The video footages 
collected from Kongsfjorden-Krossfjorden 
twin Arctic fjords in Svalbard, Norway as 
part of the Summer Indian Arctic Expedi-
tion, were analysed using You Only Look 
Once (YOLO) real-time object detection 
framework, for extending it to further 
theoretical, applied and correlative studies. 

 
 
Material and Methods 
 
     The objective of the present study was 
to design and develop a Deep Learning-
based automatic framework to monitor the 
biodiversity and community assemblages 
in the Arctic fjords. This framework can 
be used for the documentation of climate-
change driven animal migrations and sub-
sequent occurrences of invasive species in 
the Arctic fjords. 

     The study consisted of several conse-
qutive phases, namely image collection, 
pre-processing, frame extraction, annota-
tion, training and validation of the Deep 
Learning model, detection of the organism 
and type classification. Once properly clas-
sified, the images can be added to appro-
priate databases for documentation and 
further studies. The general system archi-
tecture of the study is depicted in Fig. 1.  
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Fig. 1. a) General system architecture of 
the methodology; b) Architecture of the 
YOLO framework used. 
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Study area and sampling spots 
 
     The study was carried out in the 
Kongfjorden-Krossfjorden twin glacial 
fjords, Svalbard as a part of Summer 
Indian Arctic Expedition held from May to 
June 2023 at the Indian Research Base, 
‘Himadri’, located at Spitsbergen, Sval-
bard, Norway (78°55′ N, 11°56′ E). Con-

sidering the accessibility and prevailing 
weather conditions, a total of five spots 
(four spots from Kongsfjorden and one 
spot from Krossfjorden) were selected for 
the study (Fig. 2). The locations of the 
selected spots are given in Table 1. 

 
 

 
 
Fig. 2. Study area with sampling spots. 
 
 

 
Spot ID Latitude (°N) Longitude (°E) 

KNl 78° 55’ 71.34” N 11° 55’ 99.85” E 
KN2 78° 56’ 31.80” N 11° 57’ 22.80” E 
KN3 78° 58’ 51.09” N 11° 41’ 53.26” E 
KN4 78° 90’ 68.35” N 12° 26’ 77.68” E 
KR1 79° 06’ 38.74” N 11° 65’ 23.06” E 

 
Table 1. Sampling spots and geographical co-ordinates. 
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Image collection 
 
     Underwater video footage from the se-
lected spots were captured using under-
water cameras mounted on custom-made 
stainless-steel box shaped frames of 50 cm 
x 50cm x 50cm size. The frames were 
fitted with GoPro HERO11 Black action 
cameras housed in a waterproof case   
(Fig. 3). A total of four such frames were 
set at a water depth ranging from 10 to    
20 metres in the selected spots with the 
help of suitable floats and sinkers. These 
frames were retrieved after a soak time of 

2 h. The deployment and the retrieval op-
erations were carried out from the work-
boat MS Teisten. After the retrieval of the 
cameras from the fjord, the footages were 
downloaded and the frames were rede-
ployed as per the schedule. The underwa-
ter footages were captured over a period of 
26 days. The location details and the driv-
ing environmental parameters, i.e. salinity, 
temperature and depth were also docu-
mented before each deployment of the 
frames. 

 

  
 
Fig. 3. Experimental setup showing the custom-made steel frame mounted with underwater 
cameras. 
 
 
 
Pre-processing and frame extraction 
 
     After downloading the underwater foot-
age from the cameras, it was pre-processed 
and made ready for frame extraction. The 

image frames from the videos were ex-
tracted using OpenCV Python library[2] 
and image segregation was done manually.  

 
Sample input images 
 
     The sample images obtained from the 
video dataset are presented below (Fig. 4). 
These images were extracted from the vid-
eos and are composed of Sea Anemone, 

Shorthorn sculpin/Ulke, Comb Jelly (Cten-
ophore), Echinoderm, Jellyfish and Sea 
Slug in the frame.  
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Fig. 4. Sample images extracted from the video dataset corresponding to: a) Sea Anemone,          
b) Ulke (Myoxocephalus sp.), c) Comb jelly (Ctenophore), d) Echinoderm, e) Jellyfish and f) Sea 
Slug. 

 
 
Dataset annotations 
     
     Data annotation is one of the important 
tasks in the deep learning (supervised learn-
ing) based object detections applications. 
It is important in establishing the relation-
ships between inputs and its corresponding 
outputs of the deep learning model. In this 
object detection task, the bounding box 
method was employed to annotate the ob-
jects in the images. The images of the or-
ganisms that were vivid enough to be iden-
tified were selected from the whole set    
of extracted images for annotation using     
the tool LabelImg[3]. This is a process of 
manually annotating/labelling around the 
objects in the image, and also specifying 
the class details. Five values were gener-
ated for a single object, including the co-

ordinates x1,y1 (top left corner of the 
bounding box of the object), x2,y2 (lower 
right corner) and its class value (like 0,1,2 
etc. in an encoded form). In this manner, 
the annotations of all the images as text 
files were generated. These annotation text 
files were used as the ‘ground truth’ val-
ues for the input images.  
     There were a total of 7 classes each of 
which had around 2000 images, thus con-
stituting a total of 14000 images. From this 
total pool of extracted images, 70% im-
ages were randomly selected and kept as 
training set, 20% were kept for validation 
and the rest 10% were kept for testing the 
model. 
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Model training and evaluations 
     
     These annotated images were used to 
train the deep learning model, the YOLO 
v5 (Redmon et al. 2016). In the present 
study, Tensorflow technology with python 
language was employed for training the 
model[4]. The YOLO v5 pretrained model 
was used to learn maximum discriminating 
features from the training dataset. Also, 
custom-created anchor boxes obtained by 
clustering of shapes from the training data 
set bounding boxes were used for getting 
highest detection accuracy with reduced 
false positives.  
     During the model training, weights of 
kernels were updated in order to reduce 
the loss function value. The loss function 

had to be defined initially for effective 
training. The loss function which is de-
rived from the YOLO loss function, com-
prised of the following parameter: a) Box 
Loss (Coordinate loss) – caused when an 
object is not completely covered by the 
box, b) Object loss – occurs when the 
Intersection over Union (IoU) prediction 
box and object is wrong, c) Class loss 
(Classification loss) – occurs because of 
the variations while forecasting ‘1’ for the 
correct classes and ‘0’ for remaining clas-
ses for object in the box, and d) a special 
loss, which is estimated by considering the 
objection and contraction loss. 

 

 
 

Special loss function (Redmon et al. 2016). 

 
 

     Here,  indicates the loss coefficients. 
The initial three terms specify the loss oc-
curring due to the best boxed and the last 
two terms signify the loss due to the boxes 
which have not captured any objects.  
     The model was trained for 200 epochs 
using the training set images and continu-
ously validated at the end of each epoch 

using the validation set. Best model with 
highest validation accuracy was saved for 
further testing and analysis. The saved 
model was then evaluated using the test set 
images. The evaluation metrics used are 
Mean Average Precision (mAP), Precision 
and Recall.  
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Results 
     
     The perfectly trained model was evalu-
ated using the test data and the results 
were analysed. The training curves includ-
ing the mAP and loss curves are visualised 

in Figs. 5 and 6. Further, the box loss, 
class loss and object loss are depicted in 
Fig. 6. 

 

 
 
Fig. 5. Training of the YOLO architecture. 
 
 

 
 
Fig. 6. Loss functions. 
 
 
     The captured video footage contained 
videos of Sea Anemone (11 distinct sight-
ings), Ulke (Myoxocephalus sp.) (7 dis-
tinct sightings), Comb jelly (30 distinct 
sightings), Jellyfish (1 distinct sighting), 
Amphipod (45 distinct sightings), Echino-

derm (1 distinct sighting) and Sea Slug    
(1 distinct sighting). Images were extract-
ed from this video data and were subse-
quently used for training, validation and 
testing of the model as described above. 
Visualisation of some of the predicted im-
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ages are shown in Fig 7. The Comb jelly/ 
Ctenophore was identified and localised  
in Fig. 7a, with an accuracy of 0.0956,  
Fig. 7b shows an Echinoderm and the clas-
sification accuracy is 0.935, Sea Anemone 

is depicted in Fig. 7c with a score of 0.926, 
and in Fig. 7d, Ulke/Shorthorn sculpin 
(Myoxocephalus sp.) is presented and the 
accuracy attained is 0.903.  

 

 

 
 
Fig. 7. Experimental results showing the accuracy and class labels a) Comb Jelly, b) Echinoderm, 
c) Sea Anemone, and d) Ulke (Myoxocephalus sp.). 
 

 
     
     The precision, recall and mAP values 
obtained for the test dataset are depicted  
in Table 2. The developed model attained 

good object detection abilities with a high 
value of mAP at 99.5%, precision of 
99.2%, and recall of 97.4%. 

 

mAP Precision Recall 

99.5% 99.2% 97.4% 
 
Table 2. Experimental results. Note: mAP – mean Average Precision. 
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Discussion 
 
     The vast expanse, remoteness and the 
extreme climatic conditions make biomon-
itoring studies in the Arctic region really 
challenging. In addition, the conventional 
biomonitoring methods are often invasive 
and resource-intensive as it involves man-
ual intervention. It is often difficult and te-
dious to detect and document the presence 
of species that occur in low numbers or  
are elusive, considering the vast coverage 
of the Arctic region and the interplay be-
tween the terrestrial, freshwater and ma-
rine ecosystems. Furthermore, commonly 
employed techniques like biometric stud-
ies, tagging, use of biomarkers, and mo-
lecular techniques are time-consuming, la-
borious, cost-intensive and invasive in na-
ture. Considering the high labour costs and 
delays in achieving the outcomes in manu-
al sampling, there is an increasing trend   
of switching to non-destructive and auto-
matic ways for sampling and data collec-
tion (McLaren et al. 2015).  
     There are several biomonitoring ap-
proaches that employ non-destructive, non-
interventional and automatic species detec-
tion and classification, for instance under-
water video capture (Shortis and Abdo 
2016, Jalal et al. 2020). Bicknell et al. 
(2016) reported the advantages of camera 
technologies in biomonitoring studies over 
the traditional techniques that employs ben-
thic grabs, fish trawls, box corers, or diver 
surveys, which are destructive and disturb-
ing to the ecosystem, unsuitable to certain 
locations, spatially restrictive and prohibi-
tively costly. Video-based species detection 
approach provides a better understanding 
of the habitats, the organisms thriving in 
these habitats and their responses to hu-
man activities, especially in regions of lim-
ited accessibility like the Arctic. 
     Camera technology equipped with Arti-
ficial Intelligence (AI) using deep learning 
methods facilitates the recognition of a di-
verse range of species, belonging to differ-
ent habitats, and hence a promising and ef-

fective tool in biomonitoring studies. Jiang 
and Learned-Miller (2017) and Banan et 
al. (2020) reported the efficiency of deep 
learning methods in rapid, accurate visual 
recognition and simplified classification of 
fish species. Several deep learning models 
have been successfully employed for spe-
cies recognition and their classification re-
cently, which includes VGGNet (Simonyan 
and Zisserman 2014, Fu et al. 2018); 
GoogLeNet (Szegedy et al. 2015, Tian et 
al. 2018, Khan et al. 2019); Alexnet (Lu et 
al. 2019, Ju and Xue 2020), ResNet (Mah-
mood et al. 2020) and the YOLO (Redmon 
et al. 2016, Lathifah et al. 2020, Knausgard 
et al. 2022, Hentati-Sundberg et al. 2023). 
     The YOLO is a state-of-art, real time 
object detection system that can detect 
over 9000 object categories with better 
precision and accuracy (Redmon et al. 
2016). Liu et al. (2018) presented an 
online fish tracking using the YOLO and 
parallel correlation filters and included de-
tection and categorization in an end-to-end 
approach. Similar study was carried out by 
Xu and Matzner (2018), wherein the 
YOLO architecture was trained to detect a 
variety of fish species with three very dif-
ferent data sets, obtaining a mean average 
precision score of 0.5392. Pedersen et al. 
(2019) established the application and effi-
cacy of the YOLO framework in the detec-
tion of marine animals from underwater 
footage. In their study, a new bounding 
box annotated image data set of marine 
animals from temperate brackish waters 
was considered for training using YOLOv2 
and YOLOv3. From the data set of 14,518 
frames with 25,613 annotations of six clas-
ses of marine fauna, i.e., Big fish, Small 
fish, crab, jelly fish, shrimp and star fish, 
the YOLOv3 network achieved the best 
performance with AP50 ≈ 84% (Average 
Precision at 50% IoU). Lathifah et al. 
(2020) in their study developed a fish spe-
cies classification system using the YOLO 
architecture using the underwater video 
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data set collected from Indonesian waters. 
The detection and classification of temper-
ate fish species was undertaken using the 
YOLO object detection technique with an 
accuracy of 99.27% by Knausgard et al. 
(2022). They have used public dataset 
(Fish4Knowledge) to train the object de-
tection model and used underwater video 
data collected from different locations with 
depths ranging between 1 to 40 meters for 
fish detection and classification. In our 
study, the underwater video data were col-
lected from water depths ranging between 
10 to 20 metres. 
     Świeżewski[5] employed the YOLO 
framework to automate the counting of 
Antarctic Cormorant (also known as Ant-
arctic shag Leucocarbo bransfieldensis) 
nests in drone imagery to assess the well-
being of the Antarctic ecosystem[5]. In a re-
cent study, Hentati-Sundberg et al. (2023) 
reported the application of YOLOv5 in  
the surveillance and documentation of sea 
birds, where a system of video surveil-
lance using CCTV footage combined   
with automated image processing was de-
veloped for the monitoring of Common 

Murres (Uria aalge). The system em-
ployed the deep learning algorithm the 
YOLOv5 for object detection, that had 
been trained on annotated images of the 
adult birds, chicks and eggs and outputs 
time, location, size and confidence level  
of all detections frame-by-frame, in the 
supplied video material. In their study,   
the precision (P) and Recall (R) of the 
YOLOv5-medium-960 model were 0.91 
and 0.79, with an F1 score of 0.85, over all 
classes. The model performed better for 
adults than for chicks and eggs, with a P of 
0.98, 0.84 and 0. 92 and R of 0.98, 0.74 
and 0.64 respectively. In our study, the 
YOLO model was trained using our cus-
tom dataset and the anchor boxes were 
estimated using the K-Means clustering 
technique with IoU as similarity measure. 
During the training of the model, the loss 
functions namely Box loss, Object loss 
and Class loss came down significantly as 
the training progressed through the epochs. 
As a result, superior value of mAP (99.5%), 
precision (99.2%), and recall (97.4%) could 
be achieved. 

 
 
Conclusion 
 
     The article presents advantages of using 
artificial intelligence based biomonitoring 
systems for monitoring the Arctic ecosys-
tem. In this study, a video dataset acquired 
from the Arctic region was used to de-
velop the model. The dataset collected is 
composed of videos that were collected 
using underwater cameras over a period of 
26 days across the different fjords in Nor-
way. The details of the methodology adopt-
ed and analysis carried out are discussed. 
The performance of the YOLOv5 model in 

classifying the images is also assessed. 
The YOLOv5 is found to attain a superi- 
or value of mAP, precision, and recall of 
99.5%, 99.2%, and 97.4%, respectively. 
The future direction and scope of the re-
search includes the development of more 
sophisticated techniques to improve the 
classification performance of the deep 
learning framework. This may involve use 
of upgraded version of the image capture 
system and use of latest versions of YOLO 
and other image detection algorithms.  
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