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Abstract 
Soil moisture represents one of the crucial parameters of the terrestrial environments in 
Antarctica. It affects the biological abundance and also the thermal state of the soils. In 
this study, we present one year of volumetric water content and soil temperature meas-
urements on James Ross Island, Nelson Island and King George Island. The volumetric 
water content at all sites increased with depth. The mean summer values were between 
0.24 and 0.37 cm3/cm3 (James Ross Island), 0.30 and 0.40 cm3/cm3 (Nelson Island) and 
0.11 and 0.36 cm3/cm3 (King George Island). We found that the freezing point of the 
soils was close to 0°C on Nelson Island and King George Island. We attributed the lower 
temperature of soil freezing around -0.5°C on James Ross Island to the site location 
close to the sea. Even though the sites are located in the distinctive climate zones and 
comprise of contrasting soil types, the only differences of moisture regime were ob-
served the surficial layer of the studied sites. 
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Introduction     
 
     Antarctic terrestrial environments occu-
py only about 0.5% of the whole conti-
nent (Brooks et al. 2019). One of the most 
important parameters which can affect eco-
logical and geomorphological processes in 
these areas is the availability of liquid wa-
ter in the summer months.  

     Soil moisture is an important parameter 
driving the dynamics of the periglacial 
environment. Many of the geomorphologi-
cal landforms and features are the result of 
frost weathering or freeze-thaw processes. 
Moreover, soil moisture acts as an impor-
tant driver affecting soil thermal regime, 
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heat transfer and active layer seasonal 
thawing (e.g. Farouki 1981, Clayton et    
al. 2021). Even though an increase of    
soil moisture usually leads to an increase 
in soil thermal conductivity (e.g. Farouki 
1981, Abu-Hamdeh and Reeder 2000, 
Wessolek et al. 2023), it increases the 
amount of latent heat necessary for the 
phase change at the same time. As a con-
sequence, the active layer tends to be thin-
ner under moist conditions (e.g. Clayton et 
al. 2021).  
     Besides being an important land-form-
ing parameter, soil moisture is obviously 
one of the most important ecological fac-
tors and one of the major drivers of the 
Antarctic vegetation abundance (Kennedy 
1993, Ugolini and Bockheim 2008, Royles 
et al. 2013, Guglielmin et al. 2014). Yet, 
the particular limits of soil water content 
and seasonal dynamics favouring vegeta-
tion presence are unknown. The shortage 
of available liquid water can lead to a 
rapid worsening of vegetation condition as 
was observed over a 13-year period in East 
Antarctica (Robinson et al. 2018).  
     The knowledge on soil moisture in Ant-
arctica is mostly limited to the area of 
McMurdo Dry Valleys where general soil 
research is carried out in the last few dec-
ades (e.g. Hrbáček et al. 2023). The vast 
majority of soils in the McMurdo region 
are very dry with water content lower than 
5% (Seybold et al. 2010). The zones with a 
clearly distinguishable moisture regime are 

called water tracks and form specific eco-
systems of the McMurdo region promoting 
also the abundance of biota or microbial 
diversity (Levy et al. 2011, Wlostowski et 
al. 2018, George et al. 2021). In the Ant-
arctic Peninsula region, soil moisture was 
monitored on some sites in the South Shet-
lands area. Higher moisture content was 
observed on sites below vegetation as com-
pared to bare ground on King George Is-
land (Almeida et al. 2014). On Robert 
Island, moisture content was identified as 
an important factor affecting the variabili-
ty of soil CO2 flux (Thomazini et al. 2020).  
     A thorough examination of soil mois-
ture variability therefore represents one of 
the challenges and an important step for 
the advance in Antarctic soil research in 
general (Horrocks et al. 2020, Hrbáček et 
al. 2023). The aim of our study is to evalu-
ate the general patterns and variability of 
volumetric soil water content (VWC) meas-
ured on three sites with diverse climate 
conditions and lithological propertiesin  
the northern Antarctic Peninsula region 
(James Ross Island, Nelson Island and 
King George Island) in the period 2022-
2023. Particularly we focus on: 

1) Assessment of seasonal variabili-
ty of soil moisture on each site; 

2) Evaluation of vertical changes of 
soil moisture; 

3) Determination of freeze-thaw be-
haviour of soils. 

 
 
Study sites 
 
     The study sites are located on James 
Ross Island in the north-eastern part of 
Antarctic Peninsula region and on Nelson 
Island and King George Island in the 
South Shetlands (Fig. 1). There is a cli-
mate contrast between the study sites. The 
South Shetlands have oceanic climate with 
a mean annual air temperature around        
-2.0°C (e.g. Turner et al. 2020) and annual 
precipitation around 500-1000 mm, during 

summer even in the liquid form (e.g. Kej-
na et al. 2013). In contrast, the climate 
conditions on James Ross Island are semi-
arid polar continental with mean annual 
temperature around -6.0°C (Kaplan Pastí-
riková et al. 2023) and the precipitation 
estimated between 300 and 700 mm, most-
ly in the snowy form (van Wessem et al. 
2016).  
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James Ross Island 
 
     Located off the north-eastern coast of 
the Antarctic Peninsula, James Ross Island 
has a total area of approximately 2400 km2, 
a quarter of which is currently ice-free. 
The largest continuous ice-free area on the 
island and also within the whole northern 
Antarctic Peninsula region is called the 
Ulu Peninsula and extends over 300 km2 
in the northern part of James Ross Island. 
The deglaciation of this part of James Ross 
Island dates to around 12 900 ka ago (Ný-
vlt et al. 2014). The area is underlain by 
continuous permafrost, thickness of which  

has been estimated to 67 meters (Borzotta 
and Trombotto 2004). 
     The study site is located approximately 
100 meters from the Czech Antarctic 
research station Johann Gregor Mendel in 
the northern coast of the Ulu Peninsula. It 
is situated on a Holocene marine terrace, 
overlying the Cretaceous sedimentary rocks 
of Whisky Bay Formation ([1]), character-
istic by predominantly flat or gently slop-
ing terrain. The soil is comprised of a 
loose, fine-grained sediment of prevailing 
sandy texture (Stachoň et al. 2014).  

 
Nelson Island 
 
     The total area of Nelson Island is      
165 km2, of which 95% is covered by ice 
sheet and only around 8 km2 is ice-free, 
scattered into multiple small ice-free areas 
along the coast. One of the ice-free areas, 
the Stansbury Peninsula, is located in the 
northern part of Nelson Island and covers 
approximately 2.89 km2 (Meier et al. 2023). 
Nelson Island lies in the zone of sporadic 
permafrost (Bockheim et al. 2013), with 
mean annual ground temperatures around 
0°C (Obu et al. 2020). 
     The study site is located in the central 

part of the Stansbury Peninsula, on a pla-
teau with multiple lakes. The closest lake 
is ca. 50 m far from the study site. Geo-
logically, the area is formed by volcanic 
rocks, mainly basalts, andesites and tuffs 
(Smellie et al. 1984). The relief of the 
interior part of Stansbury Peninsula forms 
a transition between paraglacial and peri-
glacial domain, with moraines, lakes and 
patterned ground as dominant landforms. 
Soils in the study area are classified as 
clay loam to sandy loam with low organic 
matter content (Meier et al. 2023).  

 
King George Island 
 
     Barton Peninsula is the second largest 
ice-free area of King George Island with 
an area of 10 km2 and was exposed after 
the retreat of Collins Glacier that started at 
15 ka ago (Oliva et al. 2019). The exposed 
surface is composed of stratified volcanic 
rocks (andesites) and a plutonic intrusion 
(Birkenmajer 1989, Hwang et al. 2011).  
     The study site is located approximately 
20 meters away from the King Sejong 
Station borehole, which was installed at 
127 m a.s.l. in bedrock and reaches a depth 
of 13 meters. It is also is situated in close 
proximity to the Automated Electrical Re-

sistivity Tomography (A-ERT) setup aimed 
to the detection of active layer freeze–thaw 
dynamics using quasi-continuous electrical 
resistivity tomography (Farzamian et al. 
2020). The ground itself is composed of a 
diamicton, featuring angular boulders and 
gravels embedded in a sandy-silty matrix. 
Periglacial processes occur with the for-
mation of stone circles, solifluction lobes, 
and striped ground. Based on the A-ERT 
data (Farzamian et al. 2020), the estimated 
thickness of the active layer in the soils is 
approximately 1–1.5 meters.  
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Fig. 1. Regional setting and study sites. 
 
 
Methods 
 
     We used VWC data from three pro-
files located on James Ross Island, Nelson 
Island and King George Island (Fig. 1, 
Table 1). At all sites, VWC was measured 
by three time-domain reflectometry sen-
sors CS655 (Campbell Sci.) with an ac-
curacy of ±3% placed at different depths 
connected to Microlog SDI-MP datalogger 
(EMS Brno). The measurement and stor-
ing interval was 60 minutes. With the re-
spect to the local conditions, the sensors 
were installed both in horizontal and ver-
tical position (Table 1). Besides VWC,  
the CS655 sensors also provide data of  
soil temperature with an accuracy between 
±0.1°C (range 0°C to +40°C) and ±0.5°C 
(full temperature range).  

     The daily VWC data are represented by 
a single measurement obtained at 16:00 
UTC, which corresponds to the midday in 
local time of the study sites. The VWC 
variability was studied only for the un-
frozen conditions defined by the mean 
daily ground temperature > 0°C. In case  
of frozen ground (ground temperature       
< 0°C), we consider VWC as approximate 
value of unfrozen water content (e.g. Zhou 
et al. 2014) 
     Finally, we used hourly data of VWC 
and ground temperature to construct the 
soil freezing curve for both phases of soil 
freezing and soil thawing at the bottom-
most sensors.  

 
Study site Installation depth [cm] Measurement period Elevation 
James Ross Island 5h, 30h, 50h cm 1/1/2022–28/2/2023   10 m  
Nelson Island 5h, 20–30 v, 50-60v cm 1/1/2022–2/2/2023   30 m  
King George Island 10h, 20–30v, 60 h cm 23/2/2022–7/2/2023 127 m  

 
Table 1. Description of the study sites. Note: h – horizontal placement of the sensor, v – vertical 
placement of the sensor.  
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Results 
 
Variability of soil moisture and temperature 
 
James Ross Island 
 
     Mean VWC on James Ross Island with-
in the study period for the unfrozen soil 
was 0.24 cm3/cm3 in 5 cm depth, ranging 
from the minimum of 0.13 to the maxi-
mum of 0.30 cm3/cm3. Both the mean and 
the minimum and maximum values in-
crease with depth, so that in 50 cm depth, 
mean VWC reached 0.33 cm3/cm3 and the 
minimum and maximum were 0.28 and 
0.37 cm3/cm3, respectively. The amplitude 
between the minimum and maximum de-
creased with depth, from 0.17 cm3/cm3 in  
5 cm depth to 0.09 cm3/cm3 in 50 cm depth 
(Table 2). 

     Ground temperature in 2022 reached an 
average of -3.22°C at 5 cm below surface 
and decreased with depth to -3.79°C at    
50 cm depth. Maximum and minimum tem-
peratures of 10.5°C and -21.1°C, respec-
tively, were observed close to ground sur-
face at 5 cm depth, with temperature ampli-
tude spanning over 31°C. The absolute val-
ue of recorded temperature extremes de-
creased with depth as well as the ampli-
tude between maximum and minimum 
(Table 3). The thawing period of 2021/2022 
ended on March 13th, while the thawing pe-
riod of 2022/2023 began on November 6th. 

 
Nelson Island 
 
     Closely below ground surface at 5 cm 
depth, mean VWC on Nelson Island 
reached 0.30 cm3/cm3 and increased with 
depth, to 0.34 cm3/cm3 in 20–30 cm and 
0.40 cm3/cm3 in 50 cm depth. The maxi-
mum observed in 5 and 20–30 cm depths 
were similar to each other, while in 50 cm 
depth the maximum was higher and 
reached 0.51 cm3/cm3. The amplitude of 
fluctuations in VWC decreased with depth, 
with over 0.32 cm3/cm3 in 5 cm to ap-
proximately 0.20 cm3/cm3 in 50 cm depth 
(Table 2).  

     Mean annual ground temperatures in 
2022 were above 0°C throughout the whole 
profile, ranging from 0.3°C at 5 cm depth 
to 0.1°C in 50 cm depth. The absolute 
value of maximum and minimum observed 
temperature decreased with depth, same as 
the amplitude of temperature fluctuations, 
from over 15°C on top to approximately 
6°C in the bottom part of the profile (Ta-
ble 3). The thawing period of 2021/2022 
ended on April 25th, 2022 and the thawing 
period of 2022/2023 began on November 
18th, 2022. 

 
King George Island 
 
     Mean VWC in 10 cm depth on King 
George Island site was 0.11 cm3/cm3 and 
exhibited pronounced differences between 
the upper and lower layers of soil, with 
mean VWC more than three times higher 
at 60 cm depth (0.36 cm3/cm3). The am-
plitude of the fluctuations was highest in 
20–30 cm depth, with maximum and mini-
mum values of 0.39 and 0.08 cm3/cm3, 

respectively. In contrast, the difference be-
tween maximum and minimum VWC in 
60 cm depth reached only 0.03 cm3/cm3 
(Table 2). 
     Mean ground temperature during the 
period from February 23rd, 2022 until  Feb-
ruary 7th, 2023 reached -0.7°C in 10 cm 
depth and slightly decreased with depth 
down to -1.0°C in the bottommost part of 



F. HRBÁČEK et al. 

15 

the profile. The temperature amplitude de-
creased with depth, ranging from over 
10°C on the top to approximately 6°C      
in 60 cm depth (Table 3). Similar to the 

Nelson Island site, the thawing period of 
2021/2022 ended on April 26th, 2022 and 
the thawing period of 2022/2023 began on 
November 18th, 2022. 

 
 Sensor 

depth 
VWCmean 
[cm3/cm3] 

VWCmax 
[cm3/cm3] 

VWCmin 
[cm3/cm3] 

5 cm 0.24 ± 0.03 0.30 0.13 
30 cm 0.27 ± 0.06 0.37 0.20 

James Ross 
Island 

50 cm 0.33 ± 0.03 0.37 0.28 
5 cm 0.30 ± 0.07 0.47 0.15 
20–30 cm 0.34 ± 0.04 0.46 0.28 

Nelson Island 

50 cm 0.40 ± 0.04 0.51 0.30 
10 cm 0.11 ± 0.05 0.19 0.04 
20–30 cm 0.18 ± 0.06 0.39 0.08 

King George 
Island 

60 cm 0.36 ± 0.01 0.38 0.35 
 
Table 2. Volumetric water content variability at various depths for the three study sites. 
 

 Sensor 
depth 

GTmean 
[°C] 

GTmax 
[°C] 

GTmin 
[°C] 

TPend TPstart 

5 cm -3.2 10.5 -21.0 
30 cm -3.7 4.8 -15.1 

James 
Ross 
Island 50 cm -3.8 1.9 -11.8 

13/03/2022 06/11/2022 

5 cm 0.3 6.5 -8.6 
20–30 cm 0.2 5.0 -5.4 

Nelson 
Island 

50 cm 0.1 3.4 -2.2 

25/04/2022 18/11/2022 

10 cm -0.7 3.5 -6.6 
20–30 cm -0.9 2.6 -5.4 

King 
George 
Island 60 cm -1.0 1.1 -4.6 

26/04/2022 18/11/2022 

 
Table 3. Ground temperature variability at various depths with the dates of the end of thawing 
period 2021/2022 and the beginning of thawing period 2022/2023 for the three study sites. 
 
 
Soil freeze-thawing characteristics 
 
James Ross Island 
 
     The period of soil freezing occurred be-
tween March 16th  and April 7th, 2022 on 
James Ross Island. The temperature of the 
soil during zero-curtain period was -0.5°C. 
The more pronounced decrease of soil mois-

ture to the values below 0.3 cm3/cm3 was 
visible around March 28th, 2022 (Fig. 3) 
which was in ca 2/3 of zero-curtain phase 
duration. 
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Fig. 2. Variability of studied parameters on the three sites – (A) VWC and (B) ground temperature 
on James Ross Island; (C) VWC and (D) ground temperature on Nelson Island; (E) VWC and    
(F) ground temperature on King George Island.  
 

 
 
Fig. 3. The variability of VWC and soil temperature on James Ross Island during the freezing and 
thawing phase. 
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     As indicated by the soil freezing curve, 
the inflection point representing the begin-
ning of the soil freezing process is for    
the values of 0.3 cm3/cm3 and -0.45°C for 
moisture and temperature, respectively. 
The residual (unfrozen) water content is 
around 0.15 cm3/cm3 for the temperature   

-2.0°C. The soil thawing process was rela-
tively fast. The thawing zero-curtain pe-
riod occurred within a short period be-
tween December 10th and 15th, 2022 (see 
Fig. 3) when temperature was kept around 
-0.6°C and VWC around -0.23 cm3/cm3.  

 
 
Nelson Island 
 
     Soil freeze-thaw curves on the Nelson 
Island site were distorted by the fact that 
the sensor at the bottommost level was  
and still is placed in the vertical position. 
Therefore, during freezing and thawing, 
the soil temperature sensor is above or 
below the freeze-thaw front. Therefore, we 
observed the initial patterns of soil phase 
change represented by a decrease of soil 
moisture from 0.45 to 0.37 cm3/cm3 under 
measured temperature of 0.1°C (Fig. 4). 
The pronounced decrease of moisture from 
0.37 to 0.32 cm3/cm3 occurred between     

May 9th and 14th, 2022 when temperature 
dropped from 0.1 to -0.1°C. Notably, the 
values of unfrozen water content remain 
around 0.25 to 0.27 cm3/cm3 over the 
whole winter season (Fig. 2). During the 
thawing phase, VWC exhibited the highest 
increase during a short period between  
November 17th and 18th, 2022. We assume, 
that the sudden increase in temperature 
from -0.1 to 0.1°C might be conditioned 
by the sensor parameters. Yet, the change 
is within the accuracy of the sensor.  

 

 
 
Fig. 4. The variability of VWC and soil temperature on Nelson Island during the freezing and 
thawing phase. 
 
 
King George Island 
 
     The zero-curtain period ended on May 
9th, 2022 when a clear and rapid decrease 
of soil temperature and moisture started 

(Fig. 5). Soil freezing process starts at the 
temperature closely below 0°C. The stable 
frozen soil is around temperature -0.5°C 
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with a residual water content of 0.14 cm3/ 
cm3. The soil thawing process begun on 
December 15th, 2022  when soil moisture 
started to increase considerably and ended 

on December 27th, 2022 when the moisture 
values have stabilized. The temperature dur-
ing the thawing process was between -0.2 
and -0.05°C (Fig. 5).  

 

 
 
Fig. 5. The variability of VWC and soil temperature on King George Island during the freezing 
and thawing phase. 
 
 
Discussion 
 
     The study sites are located in the parts 
of Antarctic Peninsula with distinctive air 
temperature average (e.g. Oliva et al. 2017, 
Turner et al. 2020), precipitation rates (e.g. 
van Wessem et al. 2017, Palerme et al. 
2017) and the overall soil thermal condi-
tions (e.g. Hrbáček et al. 2023). Yet, the 
VWC variability on the study sites exhib-
ited a relatively similar pattern. The high-
est VWC was observed on Nelson Island, 
on the side of the Antarctic Peninsula with 
higher annual precipitation rates and the 
soils with relatively find matrix favouring 
the soil retention. The lowest VWCs were 
observed on Barton Peninsula, which we 
mostly associated with the gravelly matrix 
of the study site (Fig. 1; Farzamian, per-
sonal communication).  
     Notably, the site on James Ross Is- 
land, which is often classified as semi-arid 
polar-continental climate zone (Martin and 
Peel 1978), had also relatively high VWCs 
reaching up to 0.37 cm3/cm3. However, 

when compared to the hyper-arid climate 
conditions typical for McMurdo Dry Val-
leys where soil moisture is very often 
lower than 0.05 cm3/cm3 (Seybold et al. 
2010, Levy et al. 2011), VWC data from 
AWS-JGM site indicate relatively humid 
soils. Indeed, the analysis of gravimetric 
water content on other sites on James Ross 
Island showed that the moisture content 
can be 7 to 12% than on AWS-JGM (Hrbá-
ček et al. 2019). 
     All of the study sites followed a similar 
pattern of increasing moisture with in-
creasing depth. Such a pattern is typical 
for the moisture profiles in permafrost 
affected areas where the frozen soil creates 
an impermeable layer and the moisture is 
accumulated at the base of the active layer 
(e.g. Shur et al. 2005, Andresen et al. 
2020). We attribute the differences be-
tween the maximum seasonal water con-
tent values mostly to the differences in soil 
texture. The sites on Nelson Island and 
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James Ross Island are comprised of soils 
with relatively high content of fine mate-
rial (Stachoň et al. 2014, Meier et al. 2023) 
which creates favourable conditions to 
keep a relatively high amount of soil water 
even in the surficial part of the profile. The 
gravelly matrix in the topmost part of soil 
on King George Island has a low capa-
bility to keep the water (e.g. Scheinost et 
al. 1997) which is transported downwards 
through the soil profile and accumulated 
above the permafrost table (e.g. Andresen 
et al. 2020).  
     The beginning of the thawing season 
showed different patterns of VWC when 
all three sites are compared. A VWC re-
gime with a pronounced short-term maxi-
mum peak was observed on Nelson Island 
and was very likely caused by the infil-
tration of snowmelt water which very of-
ten lead to full water saturation (e.g. 
Mohammed et al. 2019). We assume that 
some meltwater infiltration occurred also 
on King George Island, as the VWC val-
ues at top and middle sensors were twice 
higher than at the end of the thawing 
season 2022 (Fig. 2). The overall occur-
rence of snow on Nelson and King George 
Islands is also suggested by the isothermal 
ground thermal regime prior to the zero-
curtain period, which is one of the indi-
cators of snow presence (e.g. Zhang 2005, 
Oliva et al. 2017). In contrast, the initial 
thawing on James Ross Island does not 
show any signs of possible snowmelt infil-
tration. The VWC values in the beginning 
of thawing season 2022/23 are even lower 
than they were at the end of the thawing 

season 2021/22. The moisture loss during 
winter was ca. 0.02 to 0.05 cm3/cm3 
     The soil freezing curves reveal that the 
freezing temperature is very close to 0°C 
on the sites on Nelson and King George 
Island, whereas the freezing temperature 
on James Ross Island was around -0.5°C. 
We suppose that the major reason is the 
close proximity to the sea and the fact, that 
the site is located on the marine terrace 
presumably exhibiting some level of salini-
ty. A laboratory experiment found that salt 
content lower than 0.5% is sufficient to 
decrease the freezing point to -1.0°C in 
sandy soils (Bing and Ma 2011). The soil 
freeze-thawing hysteresis exhibited typical 
loop with higher VWC values in freezing 
phase than thawing at all sites (Devoie et 
al. 2022).  
     We also detected noticeable values of 
unfrozen water content especially on Nel-
son Island, where the VWC during winter 
did not dropped below 0.25 cm3/cm3 at   
the depth of 50 cm. Even though the TDR 
are considered to slightly overestimate the 
amount unfrozen water content (e.g. Wata-
nabe and Wake 2009), the absolute value 
of overestimation of non-calibrated sen-
sors was found lower than 0.05 cm3/cm3   

in many studies (e.g. Watanabe and Wake 
2009, Zhang et al. 2011, Zhou et al. 2014). 
High amount of unfrozen water content   
in the frozen ground can increase the heat 
transport and generally promote the perma-
frost thawing (e.g. Romanovsky and Os-
terkamp 2000, Oldenborger and LeBlanc 
2018).  

 
 
Conclusion 
 
     This study brings the first results from a 
newly established network for soil mois-
ture monitoring in the northern Antarctic 
Peninsula region. Even though the distinc-
tive conditions between oceanic climate on 
South Shetlands and semi-arid climate on 
James Ross Island create a prerequisite for 

distinctive soil moisture regime, the obser-
vation shows rather small differences be-
tween study sites. In absolute values, the 
moistest site was Nelson Island where soil 
moisture exceeded 0.50 cm3/cm3, which 
can be related to the overall moist climate 
and fines soil matrix favouring water re-
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tention. The moisture values on King 
George Island and James Ross Island were 
comparable in the bottommost zone. We 
assume that the lowest moisture in the top 
layer on King George Island was attributed 
to coarse and highly permeable soils.  
     Importantly, we observed a noticeable 
amount of unfrozen water content at all of 
the sites. High amount of unfrozen water 

can significantly promote heat transfer to 
the ground and favour the active layer 
thickening. Therefore, mainly in the bor-
der conditions of permafrost presence on 
the South Shetlands, the variability of soil 
moisture can be one of the crucial pa-
rameters affecting the distribution of ac-
tive layer thickness and permafrost. 
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