CZECH POLAR REPORTS 10 (2): 297-312, 2020

Spectral properties of Antarctic and Alpine vegetation monitored
by multispectral camera: Case studies from James Ross Island
and Jeseniky Mts.
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Abstract

In this study, we investigated the utility of spectral remote sensing data gathered by a
multispectral camera for estimating of vegetation cover in Antarctic vegetation oasis and
Arcto-Alpine tundra. The surveys exploiting unmanned aerial vehicles (UAV) and multi-
spectral camera were done in an Antarctic vegetation oasis located at the Northern shore
of James Ross Island (Antarctica), and arcto-alpine tundra located in the Jeseniky Mts.
(NE Czech Republic, 1 420 m a.s.l.). For the two locations, false colour images of
spectral indices (VARI, NGRDI, GLI, RGBVI, ExG, NDVI, PRI) were taken and
analysis of vegetation types and components of vegetation cover was done. Additionally,
field research was performed by handheld instruments measuring NDVI, PRI and of
selected vegetation components: Bryum pseudotriquetrum, Nostoc commune colonies
(Antarctica), lichens grown on flat stones and boulders (the Jeseniky Mts.). The results
show UAV photo surveys and imaging of spectral reflectance indices can be used to
monitor vegetation types forming Antarctic vegetation oases and arcto-alpine tundra.
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Introduction

Remote sensing provides an opportuni-
ty to monitor vegetation cover at a great
variety of spatial and temporal scales in
Arctic (Stow et al. 2004), Antarctica (Ja-
wak et al. 2019, Gaffey et al. 2020), and
Alpine environments (Duan et al. 2011).
In last decades, several vegetation indices
have been successfully tested in treeless
polar and alpine environments to distin-
guish components of their vegetation cov-
er (see Beamish et al. 2020 for review).
Among them, the Normalized Difference
Vegetation Index (NDVI) has been applied
to characterize different types of vegeta-
tion types forming vegetation cover and
their vigour. However, in the ecosystems
with partial or full absence of vascular
plants, NDVI evaluation is rather compli-
cated because of species-specific optical
properties and spectral signature of mosses,
lichens (Bartak et al. 2018) and cyano-
bacteria. However, Casanovas et al. (2015)
compared NDVI and matched filtering ap-
proaches for mapping lichens in Antarctica.

Recently, unmanned aerial vehicles
(UAV) and ‘on board’ spectral cameras
are used in Antarctica for vegetation map-
ping using an either visible or broad-band
multispectral approach in moss beds in the
majority of cases (Lucieer et al. 2010,
2012; Turner et al. 2014, 2018). Moreover,
other types of vegetation cover, such as,
e.g. microbiological mats, are distinguished

Material and Methods

In this study, two areas were investi-
gated by UAV-carried spectral camera: (1)
vegetation oasis at James Ross Island, Ant-
arctica, and (2) arcto-alpine tundra vegeta-

Description of Antarctic vegetation oasis
In this paper, we focused on spectral

properties of vegetation cover constituents
forming vegetation oasis at a coastal ter-
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by UAV as well (Levy et al. 2020). Even
during the summer period, these organisms
are exposed to low temperature, strong
wind, high irradiance and other stressors.
Among them, limited liquid water availa-
bility plays an important role, so that Ant-
arctic vegetation passes through several
dehydration and rehydration events during
the austral summer season. All the above-
specified environmental stressors may in-
fluence the photosynthetic performance as
well as spectral reflectance properties of
photosynthesizing organisms. Therefore,
spectral reflectance is a beneficial method
for analyzing different types of vegetation
both by ground and remote sensing ap-
proach. The most commonly used spectral
reflectance indices are the NDVI (associ-
ated with the chlorophyll content and de-
hydration in lichens), and PRI (photo-
chemical reflectance index, related to the
xanthophyll cycle conversion and changes
in PSII functioning).

In this study, we used UAV equipped
with a spectral camera to classify vegeta-
tion types of Antarctic vegetation oasis
(James Ross Island, Antarctica) and arcto-
alpine tundra in the Jeseniky Mts. We
hypothesized that spectral indices would
be sufficient tool to distinguish fine-scale
differences in dominant species forming
patchy spots in vegetation cover of the two
experimental sites.

tion neighbouring rocky outgrowth (the
Jeseniky Mountains ridge, NE Czech Re-
public).

race (63° 48' 00" S, 57° 52" 56" W, 6 m a.
s. 1.) of the northern coast of James Ross
Island. The vegetation oasis is a part of a



long-term research plot (LTRP) that was
established in January 2007 in the neigh-
bourhood of the Czech station (J. G. Men-
del). The LTRP is located close to a
coastal line in between the confluxes of
the Bohemian and Algal streams. The area
is dominated by Bryum pseudotriquetrum
that forms carpets, a longitudinal axis that
follows the line of thawing water pathway
from a temporary snowfield located hill-
side 50 m away from the area. The area

Description of arcto-alpine tundra

The area under investigation is the
Tabulové skaly rocks (50° 5° 15.398" N,
17°13°52.435" E). The site is a forest-free
area located at the altitude of 1420 m a.s.l.
(the Jeseniky Mts. NE of the Czech Re-
public). The rocky outgrowths are sur-
rounded by alpine plant communities clas-
sified as wind-swept alpine grasslands and
closed alpine grasslands (Nardo-Caricion

UAV IN VEGETATION MAPPING

comprises two subareas and rich in mi-
crobial mats formed by Nostoc sp. colony,
algal (e.g. Zygnema sp.) and cyanobac-
terial species at the bottom of shallow
streams vegetatively active for a short-term
period during austral summer (Komarek
2013, Komarek et al. 2015). Out of moss
carpet area, a stony surface is covered by
patches of lichens, such as e.g. Rhizoplaca
melanopthalma, Xanthoria elegans (Bartak
et al. 2015)

rigidae). In the Tabulové skaly rocks neigh-
bourhood, non-native Pinus mugo stands
are found (for more detail see Bartdk et al.
in this CPR issue). The Tabulové skaly
rocks is a locality rich in lichen and moss
flora with some glacial relicts of vascular
plants, such as e.g. Salix herbacea, that
grows mainly along the rock edges.

Aerial vegetation images and data processing

The long-term research plot vegetation
images were acquired by using UAV Phan-
tom 3 (DJI, Shenzhen, China) equipped
with RGB camera in about 20 m above
ground level within one flight at stable
light condition. The vegetation images of
Tabulové skaly rocks area were taken
using UAV Matrice 200 (DJI, Shenzhen,
China) equipped with multispectral Red
Edge-M camera (Micasense Inc., USA) in
hight of 20 m above ground level within
one flight at the stable light condition. Ad-
ditionally, the reference images of cali-
bration reflectance panel (Micasense Inc.,
USA) were acquired immediately before
and after flight for radiometric calibration
of multispectral images.

The acquired image data were proc-
essed using the structure from motion pho-
togrammetry software Agisoft Metashape
Professional v. 1.6 (Agisoft LLC.) to derive
a multichannel orthomosaic with 1.8 cm

spatial resolution. Spectral indices were
calculated per plot from the multispectral
camera's narrow-band spectral images (Red
Edge-M, for the Jeseniky Mts). Additional
parameters were calculated from red (R,
586-608 nm), green (G, 545-575 nm), and
blue (B, 439-455 nm) colour channels
(RGB camera, for the LTRP). Several spec-
tral indices were calculated for each image
pixel and visualized in false colour scale
(see Table 1, and Figs. 1-2, 4-6). The im-
ages were used for the analysis of con-
stituents of vegetation cover and character-
istics of vegetation-free areas as well as
the physiological status of particular plant
species. For analysis of spectral indices
at James Ross Island, the following cov-
ers were distinguished: bare soil (sites 7-8;
Fig. 1),regolith, microbiological soil crusts,
moss carpets (sites 1-6, 11-12), and Nostoc
commune colonies (sites 3-6, 9-10; Fig. 1)
in seepages. For the Jeseniky Mts. area, the
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following types of cover were used (see
Fig. 4): (A) vegetation-free stony field,
(B) Vaccinium myrtillus-dominated stand,
(C) Nardus stricta-dominated arcto-alpine

grass, (D) Pinus mugo stand, (E) alpine
meadows rich in vascular plant species,
and (F) moss-carpet covering stony places.

Index Equation Reference

s . Ry — R
Visible Atmospheric VARI = g LI .
Resistant Tndex Rg + Rz — Ry Gitelson et al. 2002

. R, ~ R
Normalized Green-Red NGRDI = -2 UR .
Difference Index R+ Ry Tucker 1979
2% Rg — Rg — Ryp

Green Leaf Index GLI = Louhaichi et al. 2001

T 2% Bo4 Rp+ Ry

Triangular Greenness Index

TGl = Ry — 039 X Rp — 0.61 X Rp

Hunt et al. 2013

Red-Green-Blue
Vegetation Index

Ri*— Ry X Ry

RGBVI = -
Re% + Ry X Ry

Bendig et al. 2015

Normalized Excess

T 2XR,- Rp- Ry

Grneen Index ExG = Re + Rp + Ry Woebbecke et al. 1995
. . Ryig — R
Noermalized Difference NDVI = NIR TR
Vegetation Index Ryin + Ry Rouse et al. 1974
Modified Simple msp = Rur/Be —1 Chen 1066
Ratio Index B/ R+ 1 :
cl _ B .
Green Chlorophyll Index green = g - (itelson et al. 2003
. Ro1 — Rorg)
Photochemical pri = Rsu ~ Rsyo) s
Reflectance Index (Reas + Rang Gamon et al. 1992

Table 1. Overview of applied vegetation reflectance indices calculated from RGB and narrow-

band reflectance data.

Spectral measurements by handheld instrument

In 2018 austral summer season, we
measured spectral reflectance curves (380-
800 nm) at the LTRP (James Ross Island,
Antarctica), using a PolyPen RP 400 (Pho-
ton System Instruments, Czech Republic).
Several reflectance indices were analyzed
(see Table 1). The measurements were
done repeatedly in 3-4 days intervals. Af-
terwards, we compared mean values of in-
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dices for vegetation types concerning the
local weather conditions (temperature and
humidity). The vegetation types were: (A)
Bryum pseudotriquetrum—dominated moss
carpet (sites 1-6, and 11-12 in Figs. 1 and
2), (B) colonies of Nostoc commune (sites
3-6 and 9-10), (C) bare soil (sites 7-8), and
(D) biological soil crusts formed by sev-
eral algal/lichen/moss species.



In summer season 2019, spectral reflec-
tance curves (380-800 nm) were measured
on Tabulové skaly rocks. The same instru-
ment (PolyPen RP 400) was used for the
analysis of reflectance indices. Measured
vegetation types were: (A) vegetation-free

Results and Discussion

For Antarctic vegetation oasis, PRI,
NDVI, GLI, RGBVI, and EXG indices
showed they are very sensitive in the indi-
cation of moss-dominated vegetation cover
(see Figs. 1, 2). The other vegetation oasis
components, such as seepages, biological
soil crusts and lichen-dominated sites are
less distinguishable. However, the bottom
of the seasonal stream (fed by a melting
snowfield during austral summer) covered
by a thin surface-attached community of
algae and cyanobacteria when hydrated
can be easily distinguished from surround-
ing bare soil and stony regolith (see lo-
calities 9 and 10 in Fig. 1, 2). This is well
comparable to the evidence of seasonal
algal bloom monitoring and biomass esti-
mation reported by Gray et al. (2020). It
can be concluded that the spectral indices
used in our study might be applied for
the evaluation of plant functional types
in Antarctic vegetation oases and follow-
up vegetation classification studies. For li-
chen-dominated vegetation cover, however,
more basic research is needed to distin-
guish particular species groups and, possi-
bly, their physiological status, i.e. physio-
logical functioning when wet and physio-
logical dormancy when dry. The approach
is prospective for evaluating spatial dis-
tribution, spectral properties and temporal
variability of primary producers of Ant-
arctic terrestrial vegetation oasis, as shown,
e.g. by Salvatore et al. (2020) for Dry Val-
leys. However, small-scale analysis of re-
mote spectral data in lichen vegetation cov-
er seems to be still problematic. With re-

UAV IN VEGETATION MAPPING

stony field, (B) Vaccinium myrtillus-domi-
nated stand, (C) Nardus stricta-dominated
arcto-alpine grass, (D) Pinus mugo stand,
(E) alpine meadows rich in vascular plant
species, and (F) moss-carpet covering stony
places (Fig. 4).

cent technologies, the approach could be
applied only for relatively large spots (the
area of hundreds of square cm) with mono-
specific lichen cover.

The apparent colour of Antarctic crypto-
gamic vegetation, largely consisting of li-
chens, depends on the amount and chemi-
cal structure protective compound allocat-
ed in the upper cortex, and hydration state
which changes the optical properties of
lichen thalli. Therefore, additional multi-
spectral bands, e.g. near infra-red indices,
rather than the more traditional visible-
near infrared bands seem to be better for
detecting this type of vegetation, as sug-
gested by e.g. by Calviflo-Cancela and
Martin-Herrero (2015) and Jawak et al.
(2019). For follow-up remote sensing stud-
ies in lichen-dominated polar vegetation,
the identification of mosses and lichens,
and the definition of their spectral proper-
ties are critical requirements for improving
vegetation remote sensing and evaluation
of polar tundra plant functional types. For
moss-dominated vegetation oasis, Turner
et al. (2018) suggested a combined ap-
proach of spectral reflectance-based re-
mote imaging and modelling in order to
evaluate health status of Antarctic moss
cushions. Moreover, spectral properties of
plant functional types can be related to
light use efficiency (LUE) as reported
for tundra vegetation components by e.g.
Huemmrich et al. (2013). The latter ap-
proach has a great potential for follow-up
studies in polar regions.
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Fig. 1. Visual (VIS) and false colour images of VARI, NGRDI indices distribution on long-term
research plot (LTRP), James Ross Island, with the points of measurements of vegetation types.
Hexagonal structures close to "1 ’and ‘3" in the VIS image are OTCs installed at the LTRP in 2007.
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Fig. 2. False colour images of GLI, RGBVI, ExG indices distribution on long-term research plot
(LTRP), James Ross Island, Antarctica, with highlighted localities of different measured vegetation
types (compare with Fig. 1).
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Field measurements of PRI, NDVI, and
other reflectance indices for the LTRP at
James Ross Island (Antarctica) revealed a
small seasonal dynamics dependent on mi-
croclimate, liquid water availability in par-
ticular. Typically, PRI and NDVI changed
from medium wet to dry state in the auto-
trophs reported in Table 2.

The results gained at the vegetation oa-
sis (James Ross island) suggest that photo-
synthesizing communities forming the oa-
sis can be detected by remote sensing and
in situ measurements using spectral reflec-
tance indices. Intra- and inter-annual varia-
bility in spectral signatures might be attrib-
uted to short-term variations in their dis-
tribution (biological mats especially), their

Tabulové skaly rocks

The arcto-alpine tundra components at
the Tabulové skaly rocks were well dis-
tinguishable both in visual UAV photogra-
phy and the false colour images of VARI,
NGRDI, GLI, RGBVI, ExG, NDVI, PRI
(Fig. 4-6). Significant components (rocks,
stony fields, boulders) and vegetation types
(Vaccinium myrtilus, Pinus mugo, alpine
meadows stands, Nardus stricta-dominated
grass stand) were identified on the false
colour images of the indices. These vege-
tation components formed relatively dense,
homogeneous patches. The results of this
study show that, similarly to recent studies

UAV IN VEGETATION MAPPING

hydration status and photosynthetic activi-
ty in response to hydration. Numeric value
of particular spectral reflectance indices in
poikilohydric mosses and lichens are de-
pendent on their hydration status as shown
earlier in laboratory studies (Bartak et al.
2018). In the field Antarctic studies, the
measurements of lichen thallus and/or moss
cushion hydration status, however, meet
some difficulties due to technical problems
with installations of sensors into a moss
and/or lichen thalli. In spite of that, future
studies combining remote sensing of spec-
tral characteristics of Antarctic vegetation
with in situ measurements of physical en-
vironment variables seems to be a promis-
ing approach.

(e.g. Fraser et al. 2016, Siewert and Olofs-
son 2020), UAV photo surveys can be
used to monitor vegetation types forming
arcto-alpine tundra and the changes in
fine-scale vegetation composition. Moreo-
ver, season-related changes in greenness
pattern for particular vegetation type could
be monitored if repeated surveys (UAV
flights) are done within a single season.
This is valid e.g. for Empetrum sp. that
showed bright orange-brown foliage af-
ter the winter of 2019/2020 followed by
gradually developing green foliage in mid-
summer season (see Fig. 3).

Fig. 3. Early spring (left) and summer view (right) on Vaccinium myrtillus—dominated patchy
stands (Tabulové skaly rocks).
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VIS

Fig. 4. Visual (VIS) and false colour images of VARI, and NGRDI indices in Tabulové skaly locality with
highlighted sites: (A) vegetation-free stony field; (B) Vaccinium myrtillus-dominated stand; (C) Nardus stricta-
dominated arcto-alpine grass; (D) Pinus mugo stand; (E) alpine meadows; (F) moss-carpet over stony places.
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Fig. 5. False colour images of GLI/ RGBVI / ExG indices distribution on Tabulové skaly rocks
locality with highlighted different measured vegetation types (compare with Fig. 4).
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NDVI

Fig. 6. False colour images of NDVI, MSR, and Cly., indices distribution on Tabulové skaly
rocks locality with highlighted different measured vegetation types (compare with Fig. 4).
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Individual boulders with flat horizontal-
ly-arranged upper surfaces were found at
the top and bottom parts of the images and
indicated by the blue colour in false colour
images (white in visible). Field measure-
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ments of reflectance indices were done
in spots dominated by differently coloured
lichen species for these boulders. Even
though for lichens, numeric values are hy-
dration status-dependent (Singh et al. 2013,
Bartak et al. 2018), indices showed lichen
species specificity according to thallus col-
our (Table 3).

From selected indices, RGBVI, derived
from RGB visual image analysis, showed
a high dynamic range that can help distin-
guish different community forming species
and plant functional types and comprise
biotic cover in alpine ecosystems. The
RGVBI might be recommended for the
studies done in early-stage biotic cover as
well as, e.g. freshly deglaciated fields in
maritime Antarctica. NDVI, however, as a
narrow-band spectral analysis index might
be correlated with the degree of active
chlorophyll composition in analyzed bio-
cover in both field plots. Therefore, NDVI
should be used preferably in the studies
focused on metabolic/physiological activi-
ty of vegetation than in the classification
of vegetation component and their cover-
age area. It is because of the fact that some
cryptogamic species exhibit low reflec-
tance in the near-infrared region and are
not easily detected by NDVI (Sotille et al.
2020). This may complicate NDVI-based
determination of species or vegetation func-
tional groups (e.g. in lichens). Additional-
ly, the spectral reflectance of cryptogamic
Antarctic vegetation is highly variable ac-
cording to water contents and seasonal con-
ditions that influence NDVI value. In li-
chens, thanks to secondary pigments other
than chlorophyll, the red edge is usually
absent or very weak on spectral reflectance
curve. This explains the lower ability of
NDVI to distinguish different lichen spe-
cies in Antarctica (Fretwell et al. 2011,
Casanovas et al. 2015). In the lichen spe-
cies with black thalli (e.g. genera Psoroma
and Himantormia), extremely low reflec-
tance in the visible wavelengths is found
which limits the use of NDVI in such li-
chen species.
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