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Abstract 
Surface glacier facies are superficial expressions of a glacier that are distinguishable 
based on differing spectral and structural characteristics according to their age and inter-
mixed impurities. Increasing bodies of literature suggest that the varying properties of 
surface glacier facies differentially influence the melt of the glacier, thus affecting the 
mass balance. Incorporating these variations into distributed mass balance modelling can 
improve the perceived accuracy of these models. However, detecting and subsequently 
mapping these facies with a high degree of accuracy is a necessary precursor to such 
complex modelling. The variations in the reflectance spectra of various glacier facies 
permit multiband imagery to exploit band ratios for their effective extraction. However, 
coarse and medium spatial resolution multispectral imagery can delimit the efficacy of 
band ratioing by muddling the minor spatial and spectral variations of a glacier. Very 
high-resolution imagery, on the other hand, creates distortions in the conventionally 
obtained information extracted through pixel-based classification. Therefore, robust and 
adaptable methods coupled with higher resolution data products are necessary to 
effectively map glacier facies. This study endeavours to identify and isolate glacier 
facies on two unnamed glaciers in the Chandra-Bhaga basin, Himalayas, using an 
established object-based multi-index protocol. Exploiting the very high resolution 
offered by WorldView-2 and its eight spectral bands, this study implements customized 
spectral index ratios via an object-based environment. Pixel-based supervised 
classification is also performed using three popular classifiers to comparatively gauge 
the classification accuracies. The object-based multi-index protocol delivered the highest 
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overall accuracy of 86.67%. The Minimum Distance classifier yielded the lowest overall 
accuracy of 62.50%, whereas, the Mahalanobis Distance and Maximum Likelihood 
classifiers yielded overall accuracies of 77.50% and 70.84% respectively. The results 
outline the superiority of the object-based method for extraction of glacier facies. 
Forthcoming studies must refine the indices and test their applicability in wide ranging 
scenarios. 
 
Key words: Glacier facies, band ratios, object-based classification, customized spectral 
indices 
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Introduction     
 
     The transformation from snow to ice is 
not a linear change, but rather a continu-
ously changing phenomenon. This implies 
that the factors contributing to the meta-
morphosis of fresh snow to its aged and 
varied forms are undergoing continuous 
change. These factors include precipitation, 
temperature, deposited particulates, debris 
cover etc. Meteorological fluxes in associ-
ation with the surrounding geomorphology 
are the cause of the variations in the fac-
tors governing a glacier’s life cycle (Ben-
son 1962, Jawak et al. 2018a). The varied 
forms of snow and ice when localized on 
certain regions of a glacier create identifia-
ble expressions. The characteristics of these 
expressions are differentiable from their 
surroundings. The distinct zones where the 
varied expressions are visible, usually cor-
respond to the accumulation and ablation 
characteristics of the glacier and are called 
glacier facies (Paterson 1994). Over the 
surface of the glacier these facies intermix 
with natural/anthropogenic particles and 
can then be called surface glacier facies. 
Ali et al. (2017) observed the importance 
of understanding and assessing surface gla-
cier facies as distinct zones having diverse 
melt rates and varying impacts on total de-
glaciation. This therefore implies that each 
facies provide varying contributions to the 
overall mass balance of the glacier. While 
Bamber et al. (2004) describes the investi-

gations of mass balance to be an extensive 
divulgence of glaciological processes, un-
derstanding the mass balance without in-
corporating surface glacier facies and their 
resultant effects invariably leave void sites 
in distributed mass balance models. An at-
tempt at including facies in the 3-dimen-
sional calibration of distributed models was 
made by Braun et al. (2007). Unfortunate-
ly, the duress of logistical and climatic con-
straints does not enable year-round in-situ 
facies data collection. Moreover, traditional 
methods for assessing mass balance focus 
on limited discharge rates and temperature, 
which inevitably leave out the 3-dimen-
sional information of facies due to physi-
cal limitations of manual data collection. 
     Remotely sensed data, with its diverse 
applicability and year-round monitoring ca-
pacity is well placed to derive glacier fa-
cies and provide the necessary inputs to 
complex distributed mass balance model-
ling. Hence, the accuracy of the derived 
glacier facies is crucial to the resultant ac-
curacy of the calibrated model. This accen-
tuates the need for accurate information ex-
traction techniques from the imagery. The 
use of multispectral satellite imagery for 
mapping glacier facies has been investi-
gated through a variety of adaptive tech-
niques (Hall et al. 1988, Heiskanen et al. 
2002, Winsvold et al. 2016). Studies of 
snow and ice cover types begin from some 
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of the early investigations of the sensitivity 
of the visible and near infrared (NIR) spec-
trum to snow grain size and contamination 
(Dozier et al. 1981), as well as their re-
sultant spectral characteristics in Landsat 
TM bands (Hall et al. 1988). Yousuf et al. 
(2019) analysed the effects of radiometric 
resolutions, the timing of acquisition and 
surface morphology on the derivable spec-
tra of glacier facies in satellite imagery. 
Zhang et al. (2019) proposed an automatic 
algorithm for mapping ice cover types 
using multitemporal Landsat-8 imagery and 
multiple digital elevation models (DEMs). 
Tsai et al. (2019) used SAR data in con-
junction with topographic supplemental in-
puts for mapping total snow cover and wet 
snow cover extent. Mapping of debris-cov-
ered glaciers has also been undertaken 
using a variety of methods usually involv-
ing singular or multiple satellite imageries 
coupled with a variety of ancillary inputs 
(Ali et al. 2017, Alifu et al. 2016, Shukla 
and Ali 2016, Bhardwaj et al. 2015, Bham-
bri et al. 2011). Even the object-based clas-
sification (OBC) approach is tested for its 
potential for mapping glaciers and glacial 

covers (Jawak et al 2018a, b; Robson et al. 
2015, Rastner et al. 2014) with impressive 
results. Numerous studies employ band ra-
tioing either on the multispectral satellite 
imagery or for generation of ancillary in-
puts. While classification of image objects 
(OBC) instead of pixels has been used to 
utilize image spectra as well as contextu- 
al characteristics for, not only cryospheric 
mapping but also for other land cover map-
ping (Li et al. 2014), the efficiency of band 
ratioing techniques still hold their place in 
terms of exploiting spectral characteristics 
(Jensen 2015). An alliance of such band 
manipulations with OBC is therefore a win-
dow to uncharted potential capabilities.  
     Consequently, this study aims to utilize 
this potential for mapping the available 
range of glacier facies of two unnamed 
glaciers, located in the Chandra-Bhaga ba-
sin Himalayas. Using image classification 
as its base, this study tests the OBC tech-
nique by devising customized spectral in-
dex ratios and comparing it to the con-
ventional pixel-based classification (PBC). 
The accuracy of the resulting classifica-
tions was estimated using error matrices. 

 
Material and Methods 
 
Study Area 
 
     The current study was performed on two 
selected glaciers in the Chandra-Bhaga ba-
sin, Himalayas. Administratively, they lie 
within the state of Himachal Pradesh, In-
dia (Fig. 1). The average elevation of this 
basin is around 4300 m. The two selected 
glaciers of the present study are not well 
monitored and as such have no officially 
designated names, therefore the global land 
ice measurement from space (GLIMS) ref-
erence number associated with the selected 

glaciers are provided. This study refers to 
these glaciers as glacier A (GA) and gla-
cier B (GB).  
    GA (GLIMS Id: G077368E32554N, Raup 
et al. 2007) is about 37.42 km2 in area and 
GB (GLIMS Id: G077376E32671N, Raup 
et al. 2007) is about 27.70 km2 in area. This 
basin is home to the Indian research base, 
Himansh, which is located beyond (on the 
Sutri Dhaka glacier) the extent of the im-
agery.  
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Fig. 1. Geographical location of the study area in the Chandra-Bhaga basin. Inset a: shows the 
administrative boundaries of the state of Himachal Pradesh (blue outline) over the national 
geographic baseline map. Inset b: shows the zoomed overview of glaciers GA and GB (red 
outlines) on the WorldView-2 imagery. GA and GB are the scaled up view of glaciers GA and GB 
respectively. 
 
 
Data 
 
     The present study employs the Digital 
Globe’s very high-resolution (VHR) World 
View-2 (WV-2) multispectral imagery. 
Armed with a multispectral spatial reso-

lution of 2 m and a panchromatic reso-
lution of 0.5 m, this product can poten-
tially identify minor features on the sur-
face of a glacier that are often undetected 
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by coarser resolution imagery. The multi-
spectral bandwidths of WV-2 comprise   
of coastal (0.40 – 0.45 µm), blue (0.45 – 
0.51 µm), green (0.51 – 0.58 µm), yellow 
(0.565 – 0.625 µm), red (0.63 – 0.69 µm), 
red edge (0.705 – 0.745 µm), near infra-
red 1 (NIR1) (0.770 – 0.895 µm) and near 
infrared 2 (NIR2) (0.86 – 1.04 µm). The 
imagery was acquired on 16 October 2014, 
i.e. at the onset of winter. Jawak et al. 
(2018a and 2018b) have tested WV-2 for 
its capacity to map supraglacial facies. 

Racoviteanu and Williams (2012) used 
WV-2 for validating the results of their 
glacier terrain mapping decision tree. Ja-
wak and Luis (2011; 2013) used WV-2 for 
snow laden land cover mapping in Lar-
semann hills, Antarctica. In addition to the 
VHR imagery, we used elevation data via 
an Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer (ASTER) 
Global Digital Elevation Model (GDEM) 
v2 (spatial resolution of 30 m) to visualize 
a 3D surface of the study area. 

 
 
Methods 
 
     The workflow developed to achieve com-
parative classification in this study was 
performed as a series of steps. These steps 
can be broadly distributed into four major 
sequences as follows; (a) image rectifi-
cation and restoration, (b) object-based 
classification, (c) pixel-based classification, 
and (d) evaluation of accuracy. The meth-
odology is illustrated in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.►The processing chain used to preprocess 
and classify the images using the object-based 
and pixel-based classification techniques. 
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1. Image Rectification and Restoration 
 
     Multispectral imagery when subjected 
to classification necessitates a prior correc-
tion for atmospheric effects. This is espe-
cially true when techniques such as band 
ratioing (Paul and Hendricks 2010) in-
volve usage of wavelengths in the visible 
spectrum (Cracknell and Hayes 1991). This 
study emphasizes the use of the character-
istic spectral resolution of the WV-2 sen-
sor to map glacier facies. Therefore, in ac-
cordance with Jawak et al. (2018b) the 
process of image rectification and restora-
tion began by first accounting for atmos-
pheric attenuation through data calibration. 
A two-step process, which includes, (a) The 
conversion of raw DN values to at sensor 
spectral radiance, followed by, (b) The con-
version of at sensor radiance to at sen-   
sor or surface reflectance (Jawak and Luis 
2016). The latter was carried out through 
the Fast Line of Sight Atmospheric Analy-
sis of Hypercubes (FLAASH) atmospheric 
correction module (Kruse 2004). 
     The raw data was acquired as a set of 

21 individual tiles (courtesy of Digital 
Globe©) which were then assembled 
through seamless mosaicking. The mosa-
icked imagery was then pan sharpened to 
enhance visual interpretation when digitiz-
ing the glacial boundaries. Among the sev-
eral pan sharpening algorithms available, 
the Gram Schmidt (GS) pan sharpening 
algorithm, which is shown to be more suit-
able for land cover information extraction 
(Jawak and Luis 2013, Laben and Brower 
2000) was utilized. To aid the digitization, 
the ASTER GDEM v2 (Tachikawa et al. 
2011) was used to generate a 3-Dimension-
al (3D) surface for enhancing the topo-
graphic details (Figure 2). The final study 
area was then extracted and subjected to 
the classification protocols. The raw tiles 
were obtained at LV2A processing level 
and were orthorectified to the projection 
system of UTM WGS 84 43N and the 
geographic co-ordinate system of GCS 
WGS 1984. This negated the need for geo-
metric correction. 

 
 
2. Object-Based Classification 
 
     The OBC technique relies principally 
on the efficacy of segmentation algorithms 
for the creation of meaningful objects. This 
study applied the multiresolution segmen-
tation algorithm as it builds upon the over-
all homogeneity of the generated objects 
(Witharana and Civco 2014). The multires-
olution segmentation algorithm is a bottom-
up segmentation algorithm principled on a 
pair-wise region merging technique ([1] -
Definiens Developer 2007). This can be 
simply stated as an optimization procedure 
which divides an image into such objects 
that have greater homogeneity than hetero-
geneity. This and other segmentation algo-
rithms can be found in software packages 
such as eCognition Developer, Environ-
ment of Visualizing Images (ENVI) and 
ERDAS IMAGINE. The characteristics of 

objects generated through multiresolution 
segmentation depend upon certain user-
defined parameters. These parameters in-
clude layer weights, scale parameter, shape 
and compactness. The layer weights can be 
thought of as levels of priority. They deter-
mine the amount of importance assigned to 
each spectral band in the construction of 
image objects. The NIR1 and NIR2 bands 
were given layer weights of 4 and 3, where-
as, the coastal, green and red edge bands 
were each assigned a weightage of 2 re-
spectively. The blue, yellow and red bands 
were given a weightage of 1 each. Layer 
weights were assigned to exploit the vary-
ing spectral properties of each band. Fol-
lowing recurring trials, the scale parameter 
was stationed at 200, the shape at 0.4 and 
the compactness at 0.8. Following segmen-
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tation, the task of classifying the available 
facies was levied on the formulation of cus-
tomized spectral index ratios (SIRs). The 
bands used to develop the customized SIRs 
were selected after repetitive and meticu-
lous trials. These trials assessed the image 
objects and the associated spectra of identi-
fiable facies in adherence to visual scruti-

ny and known spectral response functions. 
This comprehensive procedure resulted in 
the testing of several combinations of ra-
tios using the selected bands. These proce-
dures ultimately culminated into the devel-
opment of three SIRs, which are listed in 
Table 1. 

 

 
 
Table 1. Customized Spectral Index Ratios (SIRs) devised for mapping glacier facies in the 
present study. 
 
 
     Classification through the developed in-
dices was performed using the rule set 
method. This method grants the assigna-
tion of thresholds for identifying facies. 
Therefore, as each threshold or multiple 
thresholds using one or more than one in-
dex may be used to classify the facies, it 
may be inferred that these thresholds are 
specific to that particular facies and can be 
used as a unique identifier for the facies un-

der consideration (Jawak et al. 2017). As 
observed by Jawak et al. (2018b) shadowed 
areas within the imagery were not easily 
differentiated. The spectra of shadowed re-
gions varied both within themselves and 
with each other. This prohibited the exist-
ing SIRs from effectively categorizing the 
associated objects of the shadowed regions 
into a single class. Therefore, it was impera-
tive to manually digitize shadowed regions.  

 

 
3. Pixel-Based Classification 
 
     The supervised classification technique 
was appointed for analysing the perfor-
mance of the PBC method. Three classifiers 
were engaged in this study, (1) Mahalano-
bis Distance (MHD); (2) Maximum Likeli-
hood (MXL); and (3) Minimum Distance 
(MD). This PBC was performed through 
an extensive classification tool available in 
Environment of Visualizing Images (ENVI) 
5.3. This tool initiates classification by the 
means of assessing user-provided regions 

of interests (ROIs) and subsequently engag-
ing multiple classifiers. Therefore, through 
a single input, multiple classified outputs 
can be generated. The facies thus extracted 
in total using both classification techniques 
were snow, glacier ice, ice mixed debris 
(IMD), debris, crevasses and shadow. The 
classes were identified using visual analy-
sis of textures and tonal variations as well 
as spectral distinctions between the availa-
ble facies. 
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4. Evaluation of Accuracy 
 
     In the absence of in-situ reference points, 
higher resolution imagery (higher in spa-
tial/spectral resolution than the image be-
ing processed) is used to assign reference 
points for accuracy assessment (e.g. Jensen 
2015). However, in the present study, the 
WV-2 imagery itself is of very high reso-
lution. Therefore, due to the lack of any 
higher resolution imagery, sixty random 
points were equally assigned between each 
of the six classes by analysis of the spec-
tral plots of image targets (Keshri et al. 
2009). The spectral plots were assessed for 
the entire imagery to ascertain the specific 
signature of the target spectra. These points 
were then used as reference points for esti-
mation of the accuracy through six meas-
ures derived from error matrices (Congal-
ton and Green 2009). These measures were: 
(a) Error of commission (EC); (b) Error of 
omission (EO); (c) Producer’s accuracy 

(PA); (d) User’s accuracy (UA); (e) 
Overall accuracy (OA); and (f) Kappa 
statistic (κ). The EC describes the total 
number/percentage of reference pixels 
incorrectly classified into a category. The 
EO is found when the reference pixel of a 
category is left out of that category in the 
classified output. The PA indicates the 
probability of the total number of pixels of 
that category being correctly classified. 
The UA delivers the probability of a pixel 
classified on the image truly representing 
that category on the ground. The OA is a 
percentage of the correctly classified 
pixels to the total pixels in the error 
matrix. The κ indicates the extent to which 
the percentage correct value of an error 
matrix is due to “true” agreement versus 
the “chance” agreement between the 
reference data and the classification and is 
calculated according to Jensen (2015). 

 
 
Results 
     
     Table 2 presents the EC, EO, PA and 
UA derived from error matrices according 
to each classification scheme. The errors 
(EC and EO) and accuracies (PA and UA) 
are listed according to each facies and the 
average of the individual measures are cal-
culated to simplify the analysis of the re-
sultant errors and accuracies.  
     The OBC and the MD obtained a com-
mon average error of commission (EC) of 
13.33%, while the MHD and MXL secured 
average ECs of 21.67% and 19.17% re-
spectively (Table 2). Although it obtained 
the lowest EC, the MD yielded the highest 
average error of omission (EO) of 30.29%.  
     The MXL obtained an EO of 28.40%, 
whereas the MHD delivered an EO of 
15.27% respectively. The OBC classified 
glacier facies with the least EO of 11.53%. 
Thus, having obtained the lowest errors of 
omission and commission (Table 2), the 
OBC invariably delivered the greatest pro-

ducer’s accuracy (PA=88.47%) and user’s 
accuracy (UA=86.67%).  
     In the PBC approach, the MHD classi-
fier performed best, with an average PA  
of 80.73% and an average UA of 80.83% 
respectively. The MXL was the second best 
PBC algorithm, which obtained an average 
PA of 73.52% and 70.83% respectively. 
The MXL delivered unclassified areas sole-
ly for glacier GB.  However, among all the 
classifiers tested, the MD performed worst, 
with and average PA of 68.89% and an av-
erage UA of 57.50% respectively. The 
three PBC methods have mapped facies 
for both GA and GB slightly differently. 
Hence, a favourable order of classification 
algorithms could be assigned to determine 
the best classifier for mapping facies.  Fig. 3 
illustrates the overall accuracy (OA) and 
the kappa statistic (κ) for the OBC and 
PBC classifiers tested in this study.  
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OBC MHD 
Errors (%) Accuracies (%) Errors (%) Accuracies (%) Thematic 

Class EC EO PA UA EC EO PA UA 
Debris 30.00 18.06 81.94 70.00 60.00 29.29 42.14 40.00 
IMD 20.00 37.50 62.50 80.00 15.00 44.37 55.63 85.00 
Snow 0.00 4.55 95.45 100.00 0.00 0.00 100.00 100.00 
Glacier Ice 5.00 9.09 90.91 95.00 5.00 0.00 100.00 95.00 
Crevasses 25.00 0.00 100.00 75.00 30.00 13.39 86.61 65.00 
Shadow 0.00 0.00 100.00 100.00 20.00 4.55 100.00 100.00 
Average 13.33 11.53 88.47 86.67 21.67 15.27 80.73 80.83 

MXL MD 
Errors (%) Accuracies (%) Errors (%) Accuracies (%) Thematic 

Class EC EO PA UA EC EO PA UA 
Debris 60.00 25.00 75.00 40.00 15.00 50.00 50.00 40.00 
IMD 30.00 47.53 52.47 70.00 50.00 0.00 100.00 45.00 
Snow 0.00 4.55 95.45 100.00 0.00 0.00 100.00 100.00 
Glacier Ice 5.00 0.00 100.00 95.00 0.00 0.00 100.00 100.00 
Crevasses 20.00 36.82 63.18 65.00 0.00 69.44 8.33 5.00 
Shadow 0.00 56.54 55.00 55.00 15.00 62.28 55.00 55.00 
Average 19.17 28.40 73.52 70.83 13.33 30.29 68.89 57.50 

 
Table 2. Measures of accuracy used to assess the classification accuracy in the present study. 
OBC: Object based classification; MHD: Mahalanobis distance; MXL: Maximum likelihood; MD: 
Minimum distance; EC: Error of commission; EO: Error of omission; PA: Producer’s accuracy; 
UA: User’s accuracy. 

 

 
 

Fig. 3. Overall accuracy (OA) and Kappa statistic (KS) obtained by the Object based classification 
(OBC), Mahalanobis distance (MHD), Maximum likelihood (MXL), Minimum distance (MD). 
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Fig. 4. Thematic classification results of GA. 
 
     
     The OBC was the best classifier of gla-
cier facies with an OA of 86.67% and a 
kappa value of 0.84. The MD was the worst 
classifier in this study having delivered an 
OA of 62.50% and a kappa value of 0.55. 
The MHD is the best classifier of the PBC 

method, however, it delivered a sub-aver-
age OA of 77.50% (κ=0.73). The MXL 
yielded an OA of 70.84% and a kappa val-
ue of 0.65. Thus, the OBC clearly outper-
forms the PBC methods for accurate map-
ping of glacier facies. 
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Fig. 5. Thematic classification results of GB. 
 
 
Discussion 
 
     Evaluation of the spectral signature was 
key to identifying and building the classifi-
cation schemes produced by this study. 
Radiometric calibration and subsequent at-
mospheric correction were, therefore, a cru-
cial part of the image restorative proce-
dure. The FLAASH atmospheric correction 
was selected due to its proven effectivity 
(Kruse 2004, Guo and Zeng 2012) and its 
previous tests on cryospheric regions (Ja-
wak et al. 2018a). This permitted the multi-
resolution segmentation of the OBC to 
characterize and isolate minute homogene-
ous objects. The minor differences in spec-
tral and contextual characteristics of these 
objects were then burgeoned by the cus-
tomized SIRs. SIR1 showed a particularly 
encouraging capacity for the isolation of 
crevasses. When paired together, SIR1 and 
SIR2 helmed the extrication of snow and 
glacier ice. Neither SIR1 nor SIR2 could 
differentiate with certainty between IMD 
and debris. The chasm between these two 

facies was identified solely through thresh-
old manipulations of SIR3. An inference 
can be drawn from such thresholded clas-
sifications, such that as each threshold be-
tween singular and multiple indices charac-
teristically isolates particular facies, that fa-
cies thus holds a distinct spectral response 
function pertaining to the spectral bands 
used in the concerned ratio. Such a unique 
function though characterized in this study 
through customized SIRs can be further 
tested in varying scenarios to identify po-
tential applications. However, different gla-
cial regions do not necessarily conform to 
identical threshold parameters. Such scenar-
ios would require image-dependent thresh-
olding (Bhardwaj et al. 2015, Alifu et al. 
2016) to realize the full potential of the 
customized SIRs. Neither a single SIR, nor 
a combination of any of the three SIRs 
could isolate shadowed areas due to the 
spectrally complex nature of the objects 
created within them. In order to avoid po-
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tential misclassifications, shadows were 
manually digitized and masked. The PBC 
did not need any such corrective steps. 
However, none of the three algorithms 
tested in the PBC approach could map fa-
cies with an acceptable level of accuracy. 
While the MHD is tested for its effectivity 
in glaciered regions (Jawak et al. 2018b, 
Jawak et al. 2017), the MXL is one of the 
most popularly used algorithms for classi-
fication (Shukla and Ali 2016, Khan et al. 
2015, Sidjack 1999). However, even the 
MXL could not map facies with enough ac-

curacy. This reiterates the basic problems 
concurrent with using traditional PBC to 
extract information from very high-resolu-
tion imagery (Wei et al. 2005). Further-
more, while traditional PBC methods are 
faster in processing and execution and may 
be the preferred when a high degree of ac-
curacy is not called for. The OBC could be 
preferred when accuracy is far more impor-
tant than the constraint of time or when the 
available time is enough.  Fig. 4 and Fig. 5 
depict the thematic classification outputs 
of GA and GB. 

 
Salient Features and Future Scope 

 
     1. Previous studies have mapped gla-
cier facies such as snow, ice, and various 
debris mixed ice/snow classes using visi-
ble to short wave infrared spectral data 
(Pope et al. 2016, Pope and Rees 2014, 
Kulkarni et al. 2010, Keshri et al. 2009, 
Hall et al. 1988), whereas we have mapped 
glacier facies using only the visible to near 
infrared (VNIR) spectrum. 
     2. The distinction between debris types 
in satellite imagery is usually accom-
plished through multiple ancillary inputs 
(Robson et al. 2015, Racoviteanu and Wil-
liams 2012, Bhambri et al. 2011, Shukla et 
al. 2010), whereas we have segregated IMD 
and debris using the customized SIRs, in-
dependent of any ancillary datasets. 
     3. Shadowed areas presented a spectral 
composite of objects, which not only dif-
fered in properties within a single shadow, 
but also differed, within multiple shadow-
ed regions on both the glaciers. Previous 
studies have indicated that greater radio-
metric quantization may improve the ex-

traction of shadowed areas (Gore et al. 
2017). However, due to the lack of a high-
er resolution product, shadows were manu-
ally extracted. 
     4. While the OBC is greater in accuracy 
than the PBC, the former requires far more 
processing time than the latter. This is 
partly due to the semi-automated nature of 
the current method as well as the manual 
interventions. This study builds on the anal-
ysis from Jawak et al. (2018a, b) to apply 
the indices on multiple glaciers and in fu-
ture studies aims to refine the present in-
dices to function automatically, thereby re-
ducing the manually induced temporal con-
straint. 
     5. The lack of field observations is a 
limiting factor at present. However, the 
equalized approach to sampling and accu-
racy assessment entail the unbiased vali-
dation. Future research will focus on in-situ 
validation coupled with ancillary inputs to 
refine the current method. 

 
Conclusion 
 
     Classification, when emphasized on mi-
nor differences in spectral signatures, places 
a requisite for atmospheric corrections. The 
protocol followed in this study for image 

restoration and rectification focuses on the 
derivation of relatively disturbance-free tar-
get spectra. Each step of the procedure be-
ginning from data calibration to the extrac-
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tion of the study area was performed to ef-
fectively ready the imagery for subsequent 
classification. The 3-dimensional surface 
generated through the supplementation of 
the ASTER GDEM not only enhanced the 
understanding of the terrain but also per-
mitted topographically referenced digiti-
zation. The results generated from the OBC 
hold steadfast the efficiency of segmenta-
tion for extraction of fine features such as 
crevasses. The differences in overall accu-
racies do illustrate the potential applicabili-
ty of such a synergistic approach of band 
ratioing segmented imagery to extract even 
the most obscure details. One of the key 
features of this approach is the indepen-
dence of the customized SIRs from short 
wave infrared bands (SWIR). Glacier faci-
es were extracted without involving SWIR 
wavelengths in the developed SIRs. Al-
though the PBC did not require manual cor-

rections for its classification, the large dif-
ferences in accuracy cannot be undermined. 
Owing to spectral complexity of the study 
area, a further refinement of the proposed 
indices is suggested for future research. 
SIRs developed in this study have a wider 
implication, however, future attempts shall 
be made to test the applicability and trans-
ferability of SIRs developed in the present 
study. Very high-resolution mapping of fa-
cies itself is rare in literature and it holds 
potential for mapping minor variations in 
facies distribution on glacier. This study 
demonstrates the suitability of the WV-2 
VHR satellite data for effective extraction 
of glacier surface facies through a multi-
index object-based approach. Further re-
search is necessary to understand the na-
ture of the specific responses to these indi-
ces as well as a test of index transfera-
bility. 
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